cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A135880 Triangle P, read by rows, where column k of P^2 equals column 0 of P^(2k+2) such that column 0 of P^2 equals column 0 of P shift one place left, with P(0,0)=1.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 7, 3, 1, 25, 34, 15, 4, 1, 138, 215, 99, 26, 5, 1, 970, 1698, 814, 216, 40, 6, 1, 8390, 16220, 8057, 2171, 400, 57, 7, 1, 86796, 182714, 93627, 25628, 4740, 666, 77, 8, 1, 1049546, 2378780, 1252752, 348050, 64805, 9080, 1029, 100, 9, 1, 14563135
Offset: 0

Views

Author

Paul D. Hanna, Dec 15 2007

Keywords

Comments

Amazingly, column 0 (A135881) also equals column 0 of tables A135878 and A135879, both of which have unusual recurrences seemingly unrelated to this triangle.

Examples

			Triangle P begins:
1;
1, 1;
2, 2, 1;
6, 7, 3, 1;
25, 34, 15, 4, 1;
138, 215, 99, 26, 5, 1;
970, 1698, 814, 216, 40, 6, 1;
8390, 16220, 8057, 2171, 400, 57, 7, 1;
86796, 182714, 93627, 25628, 4740, 666, 77, 8, 1;
1049546, 2378780, 1252752, 348050, 64805, 9080, 1029, 100, 9,
1;
14563135, 35219202, 19003467, 5352788, 1004176, 140908, 15855,
1504, 126, 10, 1;
where column k of P equals column 0 of R^(k+1) where R =
A135894.
Triangle Q = P^2 = A135885 begins:
1;
2, 1;
6, 4, 1;
25, 20, 6, 1;
138, 126, 42, 8, 1;
970, 980, 351, 72, 10, 1;
8390, 9186, 3470, 748, 110, 12, 1;
86796, 101492, 39968, 8936, 1365, 156, 14, 1;
1049546, 1296934, 528306, 121532, 19090, 2250, 210, 16, 1; ...
where column k of Q equals column 0 of Q^(k+1) for k>=0;
thus column k of P^2 equals column 0 of P^(2k+2).
Triangle R = A135894 begins:
1;
1, 1;
2, 3, 1;
6, 12, 5, 1;
25, 63, 30, 7, 1;
138, 421, 220, 56, 9, 1;
970, 3472, 1945, 525, 90, 11, 1;
8390, 34380, 20340, 5733, 1026, 132, 13, 1;
86796, 399463, 247066, 72030, 13305, 1771, 182, 15, 1; ...
where column k of R equals column 0 of P^(2k+1) for k>=0.
Surprisingly, column 0 is also found in triangle A135879:
1;
1,1;
2,2,1,1;
6,6,4,4,2,2,1;
25,25,19,19,13,13,9,5,5,3,1,1;
138,138,113,113,88,88,69,50,50,37,24,24,15,10,5,5,2,1; ...
and is generated by a process that seems completely unrelated.
		

Crossrefs

Cf. columns: A135881, A135882, A135883, A135884.
Cf. related tables: A135885 (Q=P^2), A135894 (R).
Cf. A135888 (P^3), A135891 (P^4), A135892 (P^5), A135893 (P^6).
Cf. A135898 (P^-1*R), A135899 (P*R^-1*P), A135900 (R^-1*Q).

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),R,PShR);if(n>0,for(n=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));R=P*PShR; R=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,R[r,c], if(c==1,(P^2)[ #P,1],(P^(2*c-1))[r-c+1,1])))); P=matrix(#R, #R, r,c, if(r>=c, if(r<#R,P[r,c], (R^c)[r-c+1,1])))));P[n+1,k+1]}

Formula

Denote this triangle by P and define as follows.
Let [P^m]_k denote column k of matrix power P^m,
so that triangular matrix Q = A135885 may be defined by
[Q]_k = [P^(2k+2)]_0, for k>=0, such that
(1) Q = P^2 and (2) [Q]_0 = [P]_0 shifted left.
Define the dual triangular matrix R = A135894 by
[R]_k = [P^(2k+1)]_0, for k>=0.
Then columns of P may be formed from powers of R:
[P]_k = [R^(k+1)]_0, for k>=0.
Further, columns of powers of P, Q and R satisfy:
[R^(j+1)]_k = [P^(2k+1)]_j,
[Q^(j+1)]_k = [P^(2k+2)]_j,
[Q^(j+1)]_k = [Q^(k+1)]_j,
[P^(2j+2)]_k = [P^(2k+2)]_j, for all j>=0, k>=0.
Also, we have the column transformations:
R * [P]k = [P]{k+1},
Q * [Q]k = [Q]{k+1},
Q * [R]k = [R]{k+1},
P^2 * [Q]k = [Q]{k+1},
P^2 * [R]k = [R]{k+1}, for all k>=0.
Other identities include the matrix products:
P^-1*R (A135898) = P shifted right one column;
P*R^-1*P (A135899) = Q shifted down one row;
R^-1*Q (A135900) = R shifted down one row.

A135894 Triangle R, read by rows, where column k of R equals column 0 of P^(2k+1) where P=A135880.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 12, 5, 1, 25, 63, 30, 7, 1, 138, 421, 220, 56, 9, 1, 970, 3472, 1945, 525, 90, 11, 1, 8390, 34380, 20340, 5733, 1026, 132, 13, 1, 86796, 399463, 247066, 72030, 13305, 1771, 182, 15, 1, 1049546, 5344770, 3430936, 1028076, 194646, 26565, 2808
Offset: 0

Views

Author

Paul D. Hanna, Dec 15 2007

Keywords

Comments

Triangle P = A135880 is defined by: column k of P^2 equals column 0 of P^(2k+2) such that column 0 of P^2 equals column 0 of P shift left.

Examples

			Triangle R begins:
1;
1, 1;
2, 3, 1;
6, 12, 5, 1;
25, 63, 30, 7, 1;
138, 421, 220, 56, 9, 1;
970, 3472, 1945, 525, 90, 11, 1;
8390, 34380, 20340, 5733, 1026, 132, 13, 1;
86796, 399463, 247066, 72030, 13305, 1771, 182, 15, 1;
1049546, 5344770, 3430936, 1028076, 194646, 26565, 2808, 240, 17, 1;
14563135, 81097517, 53741404, 16477041, 3182778, 442948, 47801, 4185, 306, 19, 1; ...
where column k of R equals column 0 of P^(2k+1) for k>=0,
and P = A135880 begins:
1;
1, 1;
2, 2, 1;
6, 7, 3, 1;
25, 34, 15, 4, 1;
138, 215, 99, 26, 5, 1;
970, 1698, 814, 216, 40, 6, 1; ...
where column k of P equals column 0 of R^(k+1).
The matrix product P^-1*R = A135898 = P (shifted right one column);
the matrix product R^-1*P^2 = A135900 = R (shifted down one row).
		

Crossrefs

Cf. A135881 (column 0), A135889 (column 1); A135880 (P), A135885 (Q=P^2), A135895 (R^2), A135896 (R^3), A135897 (R^4); A135888 (P^3) A135892 (P^5); A135898 (P^-1*R), A135899 (P*R^-1*P), A135900 (R^-1*Q).

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),R=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));R=P*PShR; R=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,R[r,c], if(c==1,(P^2)[ #P,1],(P^(2*c-1))[r-c+1,1])))); P=matrix(#R, #R, r,c, if(r>=c, if(r<#R,P[r,c], (R^c)[r-c+1,1])))));R[n+1,k+1]}

Formula

Column k of R = column 0 of P^(2k+1) for k>=0 where triangle P = A135880; column 0 of R = column 0 of P; column 1 of R = column 0 of P^3; column 2 of R = column 0 of P^5. See more formulas relating triangles P, Q and R, in entry A135880.

Extensions

Typo in formula corrected by Paul D. Hanna, Mar 26 2010

A136221 Column 0 of triangles A136220 and A136228; also equals column 0 of tables A136217 and A136218.

Original entry on oeis.org

1, 1, 3, 15, 108, 1036, 12569, 185704, 3247546, 65762269, 1515642725, 39211570981, 1125987938801, 35554753133312, 1224882431140838, 45731901253649898, 1839804317195739634, 79355626796692509253, 3653687500034925338348
Offset: 0

Views

Author

Paul D. Hanna, Dec 25 2007

Keywords

Comments

P = A136220 is a triangular matrix where column k of P^3 equals column 0 of P^(3k+3) such that column 0 of P^3 equals column 0 of P shift one place left. Tables A136217 and A136218 are defined by recurrences seemingly unrelated to the matrix product recurrence of A136220 and yet they all generate this same sequence in column 0.

Examples

			Equals column 0 of triangle P=A136220, which begins:
1;
1, 1;
3, 2, 1;
15, 10, 3, 1;
108, 75, 21, 4, 1;
1036, 753, 208, 36, 5, 1;
12569, 9534, 2637, 442, 55, 6, 1;
185704, 146353, 40731, 6742, 805, 78, 7, 1; ...
where column k of P^3 = column 0 of P^(3k+3) such that
column 0 of P^3 = column 0 of P shift one place left.
Surprisingly, column 0 of P is also found in square A136218:
(1),(1),1,(1),1,(1),1,(1),1,1,(1),1,1,(1),1,1,(1),1,1,1,(1),...;
(1),(2),3,(4),5,(6),7,(8),9,10,(11),12,13,(14),15,16,(17),...;
(3),(8),15,(24),34,(46),59,(74),90,108,(127),147,169,(192),...;
(15),(49),108,(198),306,(453),622,(838),1080,1377,(1704),...;
(108),(414),1036,(2116),3493,(5555),8040,(11477),15483,...;
(1036),(4529),12569,(28052),48800,(82328),124335,(186261),...;
(12569),(61369),185704,(446560),811111,(1438447),2250731,...;
...
and has a recurrence similar to that of square array A136212
which generates the triple factorials.
		

Crossrefs

Cf. A136220 (P), A136228 (U), A136231 (W=P^3).
Cf. other columns of P: A136222, A136223, A136224.
Cf. related tables: A136217, A136218.
Cf. variants: A091352, A135881.

Programs

  • PARI
    /* Generate using matrix product recurrences of triangle A136220: */ {a(n)=local(P=Mat(1),U,PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));P[n+1,1]}
    
  • PARI
    /* Generated as column 0 in triangle A136218 (faster): */ {a(n)=local(A=[1],B);if(n>0,for(i=1,n,m=1;B=[0]; for(j=1,#A,if(j+m-1==(m*(m+7))\6,m+=1;B=concat(B,0));B=concat(B,A[j])); A=Vec(Polrev(Vec(Pol(B)/(1-x+O(x^#B)))))));A[1]}

A135885 Triangle Q, read by rows, where column k of Q equals column 0 of Q^(k+1) and Q is equal to the matrix square of integer triangle P = A135880 such that column 0 of Q equals column 0 of P shift left.

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 25, 20, 6, 1, 138, 126, 42, 8, 1, 970, 980, 351, 72, 10, 1, 8390, 9186, 3470, 748, 110, 12, 1, 86796, 101492, 39968, 8936, 1365, 156, 14, 1, 1049546, 1296934, 528306, 121532, 19090, 2250, 210, 16, 1, 14563135, 18868652, 7906598
Offset: 0

Views

Author

Paul D. Hanna, Dec 15 2007

Keywords

Examples

			Triangle Q = P^2 begins:
1;
2, 1;
6, 4, 1;
25, 20, 6, 1;
138, 126, 42, 8, 1;
970, 980, 351, 72, 10, 1;
8390, 9186, 3470, 748, 110, 12, 1;
86796, 101492, 39968, 8936, 1365, 156, 14, 1;
1049546, 1296934, 528306, 121532, 19090, 2250, 210, 16, 1;
14563135, 18868652, 7906598, 1861416, 298830, 36028, 3451, 272, 18, 1;
228448504, 308478492, 132426050, 31785380, 5193982, 637390, 62230, 5016, 342, 20, 1; ...
where column k of Q equals column 0 of Q^(k+1) for k>=0.
Related triangle P = A135880 begins:
1;
1, 1;
2, 2, 1;
6, 7, 3, 1;
25, 34, 15, 4, 1;
138, 215, 99, 26, 5, 1;
970, 1698, 814, 216, 40, 6, 1; ...
where column k of Q equals column 0 of P^(2k+2)
such that column 0 of P^2 equals column 0 of P shift left.
The matrix product P*R^-1*P = A135899 = Q (shifted down one row),
where R = A135894 begins:
1;
1, 1;
2, 3, 1;
6, 12, 5, 1;
25, 63, 30, 7, 1;
138, 421, 220, 56, 9, 1;
970, 3472, 1945, 525, 90, 11, 1; ...
in which column k of R equals column 0 of P^(2k+1).
		

Crossrefs

Cf. columns: A135881, A135886, A135887; related tables: A135880 (P), A135894 (R), A135891 (Q^2), A135893 (Q^3); A135898 (P^-1*R), A135899 (P*R^-1*P), A135900 (R^-1*Q).

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),R,PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));R=P*PShR; R=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,R[r,c], if(c==1,(P^2)[ #P,1],(P^(2*c-1))[r-c+1,1])))); P=matrix(#R, #R, r,c, if(r>=c, if(r<#R,P[r,c], (R^c)[r-c+1,1])))));(P^2)[n+1,k+1]}

Formula

See formulas relating triangles P, Q and R, in entry A135880.

A135882 Column 1 of triangle A135880.

Original entry on oeis.org

1, 2, 7, 34, 215, 1698, 16220, 182714, 2378780, 35219202, 585245185, 10797322816, 219163958124, 4856832298391, 116735215192864, 3025759884533190, 84155831914971391, 2500599947944218716, 79072271422935678302
Offset: 0

Views

Author

Paul D. Hanna, Dec 15 2007

Keywords

Examples

			Equals column 1 of triangle P=A135880:
1;
1, 1;
2, 2, 1;
6, 7, 3, 1;
25, 34, 15, 4, 1;
138, 215, 99, 26, 5, 1;
970, 1698, 814, 216, 40, 6, 1; ...
where column k of P^2 equals column 0 of P^(2k+2)
such that column 0 of P^2 equals column 0 of P shift left.
		

Crossrefs

Cf. A135880; other columns: A135881, A135883, A135884.

Programs

  • PARI
    {a(n)=local(P=Mat(1),R,PShR);if(n==0,1,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));R=P*PShR; R=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,R[r,c], if(c==1,(P^2)[ #P,1],(P^(2*c-1))[r-c+1,1])))); P=matrix(#R, #R, r,c, if(r>=c, if(r<#R,P[r,c], (R^c)[r-c+1,1]))));P[n+2,2])}

Extensions

Error in entries (false comma) corrected by N. J. A. Sloane, Jan 23 2008

A135878 Square array, read by antidiagonals, where row n+1 is generated from row n by first removing terms at positions [(m+3)^2/4 - 2] for m>=0 and then taking partial sums, starting with all 1's in row 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 6, 3, 1, 25, 25, 12, 4, 1, 138, 138, 63, 19, 5, 1, 970, 970, 421, 113, 28, 6, 1, 8390, 8390, 3472, 832, 190, 38, 7, 1, 86796, 86796, 34380, 7420, 1560, 283, 50, 8, 1, 1049546, 1049546, 399463, 78406, 15250, 2502, 411, 63, 9, 1, 14563135, 14563135
Offset: 0

Views

Author

Paul D. Hanna, Dec 14 2007

Keywords

Comments

Column 0 is A135881 which equals column 0 of triangle A135879 and also equals column 0 of triangle A135880. Compare to triangle A135879, which is generated by a complementary process. An interesting variant is square array A135876, in which column 0 equals the double factorials (A001147).

Examples

			Square array begins:
(1),1,(1),1,(1),1,1,(1),1,1,(1),1,1,1,(1),1,1,1,(1),1,1,1,1,(1),...;
(1),2,(3),4,(5),6,7,(8),9,10,(11),12,13,14,(15),16,17,18,(19),20,...;
(2),6,(12),19,(28),38,50,(63),77,93,(110),128,148,169,(191),214,...;
(6),25,(63),113,(190),283,411,(559),728,942,(1181),1446,1766,2116,...;
(25),138,(421),832,(1560),2502,3948,(5714),7830,10740,(14130),18036,...;
(138),970,(3472),7420,(15250),25990,44026,(67112),95918,138343,(189598),..;
(970),8390,(34380),78406,(174324),312667,(563287),897471,1329234,2003240,..;
(8390),86796,(399463),962750,(2291984),4295224,8168819,(13523882),20656067,.;
(86796),1049546,(5344770),13513589,(34169656),66534382,132787852,(227380975),.;
(1049546),14563135,(81097517),213885369,(570682050),1149537869,2395865161,..;
(14563135),228448504,(1377986373),3773851534,(10568874312),21945438536,...;
where terms in parenthesis are removed before taking partial sums.
For example, to generate row 2 from row 1, remove terms at positions
{[(m+3)^2/4-2], m>=0} = [0,2,4,7,10,14,18,23,28,34,...] to obtain:
[2, 4, 6,7, 9,10, 12,13,14, 16,17,18, 20,21,22,23, ...]
then take partial sums to get row 2:
[2, 6, 12,19, 28,38, 50,63,77, 93,110,128, 148,169,191,214, ...].
Repeating this process will generate all the rows of the triangle.
Triangle A135880 begins:
1;
1, 1;
2, 2, 1;
6, 7, 3, 1;
25, 34, 15, 4, 1;
138, 215, 99, 26, 5, 1;
970, 1698, 814, 216, 40, 6, 1; ...
and is generated by matrix powers of itself.
		

Crossrefs

Programs

  • PARI
    {T(n, k)=local(A=0, b=0, c=0, d=0); if(n==0, A=1, until(d>k, if(c==floor((b+3)^2/4)-2, b+=1, A+=T(n-1, c); d+=1); c+=1)); A}

A135879 Triangle, read by rows of A135901(n) terms, where row n+1 is generated from row n by inserting zeros at positions [(m+3)^2/4 - 2], as m=0,1,2,3,... and then taking partial sums from right to left, starting with a single 1 in row 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 6, 6, 4, 4, 2, 2, 1, 25, 25, 19, 19, 13, 13, 9, 5, 5, 3, 1, 1, 138, 138, 113, 113, 88, 88, 69, 50, 50, 37, 24, 24, 15, 10, 5, 5, 2, 1, 970, 970, 832, 832, 694, 694, 581, 468, 468, 380, 292, 292, 223, 173, 123, 123, 86, 62, 38, 38, 23, 13, 8, 3, 3, 1, 8390
Offset: 0

Views

Author

Paul D. Hanna, Dec 14 2007

Keywords

Comments

Column 0 is A135881 which equals column 0 of square array A135878 and also equals column 0 of triangle A135880. Compare to square array A135878, which is generated by a complementary process. An interesting variant is triangle A135877 in which column 0 equals the double factorials (A001147).

Examples

			Triangle begins:
1;
1, 1;
2, 2, 1, 1;
6, 6, 4, 4, 2, 2, 1;
25, 25, 19, 19, 13, 13, 9, 5, 5, 3, 1, 1;
138, 138, 113, 113, 88, 88, 69, 50, 50, 37, 24, 24, 15, 10, 5, 5, 2, 1;
970, 970, 832, 832, 694, 694, 581, 468, 468, 380, 292, 292, 223, 173, 123, 123, 86, 62, 38, 38, 23, 13, 8, 3, 3, 1;
8390, 8390, 7420, 7420, 6450, 6450, 5618, 4786, 4786, 4092, 3398, 3398, 2817, 2349, 1881, 1881, 1501, 1209, 917, 917, 694, 521, 398, 275, 275, 189, 127, 89, 51, 51, 28, 15, 7, 4, 1, 1;
There are A135901(n) number of terms in row n.
To generate the triangle, start with a single 1 in row 0,
and then obtain row n+1 from row n by inserting zeros at
positions {[(m+3)^2/4 - 2], m=0,1,2,...} and then
taking reverse partial sums (i.e., summing from right to left).
Start with row 0, insert a zero in front of the '1' at position 0:
[0,1];
take reverse partial sums to get row 1:
[1,1];
insert zeros at positions [0,2]:
[0,1,0,1];
take reverse partial sums to get row 2:
[2,2,1,1];
insert zeros at positions [0,2,4]:
[0,2,0,2,0,1,1];
take reverse partial sums to get row 3:
[6,6,4,4,2,2,1];
insert zeros at positions [0,2,4,7]:
[0,6,0,6,0,4,4,0,2,2,0,1];
take reverse partial sums to get row 4:
[25,25,19,19,13,13,9,5,5,3,1,1];
insert zeros at positions [0,2,4,7,10,14]:
[0,25,0,25,0,19,19,0,13,13,0,9,5,5,0,3,1,1];
take reverse partial sums to get row 5:
[138,138,113,113,88,88,69,50,50,37,24,24,15,10,5,5,2,1].
Triangle A135880 begins:
1;
1, 1;
2, 2, 1;
6, 7, 3, 1;
25, 34, 15, 4, 1;
138, 215, 99, 26, 5, 1;
970, 1698, 814, 216, 40, 6, 1; ...
and is generated by matrix powers of itself.
		

Crossrefs

Programs

  • PARI
    {T(n,k)=local(A=[1],B);if(n>0,for(i=1,n,m=1;B=[]; for(j=1,#A,if(j+m-1==floor((m+2)^2/4)-1,m+=1;B=concat(B,0));B=concat(B,A[j])); A=Vec(Polrev(Vec(Pol(B)/(1-x+O(x^#B)))))));if(k+1>#A,0,A[k+1])}

A135883 Column 2 of triangle A135880.

Original entry on oeis.org

1, 3, 15, 99, 814, 8057, 93627, 1252752, 19003467, 322722064, 6071897378, 125464556309, 2826120900315, 68954181763586, 1812280504183309, 51059994255961903, 1535575877864707548, 49107734497585814006
Offset: 0

Views

Author

Paul D. Hanna, Dec 15 2007

Keywords

Examples

			Equals column 2 of triangle P=A135880:
1;
1, 1;
2, 2, 1;
6, 7, 3, 1;
25, 34, 15, 4, 1;
138, 215, 99, 26, 5, 1;
970, 1698, 814, 216, 40, 6, 1;
8390, 16220, 8057, 2171, 400, 57, 7, 1; ...
where column k of P^2 equals column 0 of P^(2k+2)
such that column 0 of P^2 equals column 0 of P shift left.
		

Crossrefs

Cf. A135880; other columns: A135881, A135882, A135884.

Programs

  • PARI
    {a(n)=local(P=Mat(1),R,PShR);if(n==0,1,for(i=0,n+1, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));R=P*PShR; R=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,R[r,c], if(c==1,(P^2)[ #P,1],(P^(2*c-1))[r-c+1,1])))); P=matrix(#R, #R, r,c, if(r>=c, if(r<#R,P[r,c], (R^c)[r-c+1,1]))));P[n+3,3])}

A135884 Column 3 of triangle A135880.

Original entry on oeis.org

1, 4, 26, 216, 2171, 25628, 348050, 5352788, 92056223, 1752149568, 36591725976, 832352590164, 20493399785598, 543168774618834, 15424012639825146, 467276557333020682, 15046702103550879196, 513273141160665106150
Offset: 0

Views

Author

Paul D. Hanna, Dec 15 2007

Keywords

Examples

			Equals column 3 of triangle P=A135880:
1;
1, 1;
2, 2, 1;
6, 7, 3, 1;
25, 34, 15, 4, 1;
138, 215, 99, 26, 5, 1;
970, 1698, 814, 216, 40, 6, 1;
8390, 16220, 8057, 2171, 400, 57, 7, 1; ...
where column k of P^2 equals column 0 of P^(2k+2)
such that column 0 of P^2 equals column 0 of P shift left.
		

Crossrefs

Cf. A135880; other columns: A135881, A135882, A135883.

Programs

  • PARI
    {a(n)=local(P=Mat(1),R,PShR);if(n==0,1,for(i=0,n+2, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));R=P*PShR; R=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,R[r,c], if(c==1,(P^2)[ #P,1],(P^(2*c-1))[r-c+1,1])))); P=matrix(#R, #R, r,c, if(r>=c, if(r<#R,P[r,c], (R^c)[r-c+1,1]))));P[n+4,4])}

A135886 Column 1 of triangle Q = A135885; also equals column 0 of Q^2.

Original entry on oeis.org

1, 4, 20, 126, 980, 9186, 101492, 1296934, 18868652, 308478492, 5605768476, 112198139500, 2454071216496, 58267971181456, 1493114371576942, 41084194594171729, 1208473333806735096, 37849717704435895370
Offset: 0

Views

Author

Paul D. Hanna, Dec 15 2007

Keywords

Examples

			Triangle Q = A135885 begins:
1;
2, 1;
6, 4, 1;
25, 20, 6, 1;
138, 126, 42, 8, 1;
970, 980, 351, 72, 10, 1;
8390, 9186, 3470, 748, 110, 12, 1; ...
where column k of Q equals column 0 of Q^(k+1) such that
column 0 of Q equals column 0 of P=A135880 shift left and Q=P^2.
		

Crossrefs

Cf. A135885; other columns: A135881, A135887.

Programs

  • PARI
    {a(n)=local(P=Mat(1),R,PShR);if(n==0,1,for(i=0,n+1, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));R=P*PShR; R=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,R[r,c], if(c==1,(P^2)[ #P,1],(P^(2*c-1))[r-c+1,1])))); P=matrix(#R, #R, r,c, if(r>=c, if(r<#R,P[r,c], (R^c)[r-c+1,1]))));(P^2)[n+2,2])}
Showing 1-10 of 11 results. Next