A135888 Triangle, read by rows, equal to the matrix cube of triangle P = A135880.
1, 3, 1, 12, 6, 1, 63, 39, 9, 1, 421, 300, 81, 12, 1, 3472, 2741, 816, 138, 15, 1, 34380, 29380, 9366, 1716, 210, 18, 1, 399463, 363922, 122148, 23647, 3105, 297, 21, 1, 5344770, 5135894, 1795481, 362116, 49880, 5088, 399, 24, 1, 81097517, 81557270
Offset: 0
Examples
Triangle P^3 begins: 1; 3, 1; 12, 6, 1; 63, 39, 9, 1; 421, 300, 81, 12, 1; 3472, 2741, 816, 138, 15, 1; 34380, 29380, 9366, 1716, 210, 18, 1; 399463, 363922, 122148, 23647, 3105, 297, 21, 1; 5344770, 5135894, 1795481, 362116, 49880, 5088, 399, 24, 1; 81097517, 81557270, 29478724, 6138746, 875935, 93306, 7770, 516, 27, 1; where P = A135880 begins: 1; 1, 1; 2, 2, 1; 6, 7, 3, 1; 25, 34, 15, 4, 1; 138, 215, 99, 26, 5, 1; 970, 1698, 814, 216, 40, 6, 1; ... where column k of P^2 equals column 0 of P^(2k+2) such that column 0 of P^2 equals column 0 of P shift left.
Programs
-
PARI
{T(n,k)=local(P=Mat(1),R,PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));R=P*PShR; R=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,R[r,c], if(c==1,(P^2)[ #P,1],(P^(2*c-1))[r-c+1,1])))); P=matrix(#R, #R, r,c, if(r>=c, if(r<#R,P[r,c], (R^c)[r-c+1,1])))));(P^3)[n+1,k+1]}
Comments