A135893 Triangle, read by rows, equal to P^6, where triangle P = A135880; also equals Q^3 where Q = P^2 = A135885.
1, 6, 1, 42, 12, 1, 351, 132, 18, 1, 3470, 1554, 270, 24, 1, 39968, 20260, 4089, 456, 30, 1, 528306, 294218, 65874, 8436, 690, 36, 1, 7906598, 4745522, 1147662, 161576, 15075, 972, 42, 1, 132426050, 84534154, 21710680, 3277148, 334390, 24486, 1302
Offset: 0
Examples
Triangle P^6 = Q^3 begins: 1; 6, 1; 42, 12, 1; 351, 132, 18, 1; 3470, 1554, 270, 24, 1; 39968, 20260, 4089, 456, 30, 1; 528306, 294218, 65874, 8436, 690, 36, 1; 7906598, 4745522, 1147662, 161576, 15075, 972, 42, 1; 132426050, 84534154, 21710680, 3277148, 334390, 24486, 1302, 48, 1; 2457643895, 1652665714, 445574768, 70977244, 7732100, 617100, 37149, 1680, 54, 1; where P = A135880 begins: 1; 1, 1; 2, 2, 1; 6, 7, 3, 1; 25, 34, 15, 4, 1; 138, 215, 99, 26, 5, 1; 970, 1698, 814, 216, 40, 6, 1; ... and Q = P^2 = A135885 begins: 1; 2, 1; 6, 4, 1; 25, 20, 6, 1; 138, 126, 42, 8, 1; 970, 980, 351, 72, 10, 1; 8390, 9186, 3470, 748, 110, 12, 1; ... where column k of Q = column 0 of Q^(k+1).
Programs
-
PARI
{T(n,k)=local(P=Mat(1),R,PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));R=P*PShR; R=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,R[r,c], if(c==1,(P^2)[ #P,1],(P^(2*c-1))[r-c+1,1])))); P=matrix(#R, #R, r,c, if(r>=c, if(r<#R,P[r,c], (R^c)[r-c+1,1])))));(P^6)[n+1,k+1]}
Formula
Column k of Q^3 = column 2 of Q^(k+1) for k>=0 where triangle Q = P^2 = A135885; column 0 of Q^3 = column 2 of Q; column 1 of Q^3 = column 2 of Q^2.
Comments