A135896 Triangle, read by rows, equal to R^3, the matrix cube of R = A135894.
1, 3, 1, 15, 9, 1, 99, 81, 15, 1, 814, 816, 195, 21, 1, 8057, 9366, 2625, 357, 27, 1, 93627, 122148, 38270, 6006, 567, 33, 1, 1252752, 1795481, 611525, 105910, 11439, 825, 39, 1, 19003467, 29478724, 10721093, 1996988, 236430, 19404, 1131, 45, 1, 322722064
Offset: 0
Examples
Triangle R^3 begins: 1; 3, 1; 15, 9, 1; 99, 81, 15, 1; 814, 816, 195, 21, 1; 8057, 9366, 2625, 357, 27, 1; 93627, 122148, 38270, 6006, 567, 33, 1; 1252752, 1795481, 611525, 105910, 11439, 825, 39, 1; 19003467, 29478724, 10721093, 1996988, 236430, 19404, 1131, 45, 1; ... where R = A135894 begins: 1; 1, 1; 2, 3, 1; 6, 12, 5, 1; 25, 63, 30, 7, 1; 138, 421, 220, 56, 9, 1; 970, 3472, 1945, 525, 90, 11, 1; ... where column k of R = column 0 of P^(2k+1) and P = A135880 begins: 1; 1, 1; 2, 2, 1; 6, 7, 3, 1; 25, 34, 15, 4, 1; 138, 215, 99, 26, 5, 1; 970, 1698, 814, 216, 40, 6, 1; ... where column k of P equals column 0 of R^(k+1).
Programs
-
PARI
{T(n,k)=local(P=Mat(1),R=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));R=P*PShR; R=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,R[r,c], if(c==1,(P^2)[ #P,1],(P^(2*c-1))[r-c+1,1])))); P=matrix(#R, #R, r,c, if(r>=c, if(r<#R,P[r,c], (R^c)[r-c+1,1])))));(R^3)[n+1,k+1]}
Formula
Column k of R^3 = column 2 of P^(2k+1) for k>=0 where triangle P = A135880; column 0 of R^3 = column 2 of P; column 1 of R^3 = column 2 of P^3; column 2 of R^3 = column 2 of P^5.
Comments