A135897 Triangle, read by rows, equal to R^4, the matrix 4th power of R = A135894.
1, 4, 1, 26, 12, 1, 216, 138, 20, 1, 2171, 1716, 330, 28, 1, 25628, 23647, 5440, 602, 36, 1, 348050, 362116, 94515, 12348, 954, 44, 1, 5352788, 6138746, 1761940, 258391, 23400, 1386, 52, 1, 92056223, 114543428, 35429974, 5662412, 572331, 39556, 1898
Offset: 0
Examples
Triangle R^4 begins: 1; 4, 1; 26, 12, 1; 216, 138, 20, 1; 2171, 1716, 330, 28, 1; 25628, 23647, 5440, 602, 36, 1; 348050, 362116, 94515, 12348, 954, 44, 1; 5352788, 6138746, 1761940, 258391, 23400, 1386, 52, 1; ... where R = A135894 begins: 1; 1, 1; 2, 3, 1; 6, 12, 5, 1; 25, 63, 30, 7, 1; 138, 421, 220, 56, 9, 1; 970, 3472, 1945, 525, 90, 11, 1; ... where column k of R = column 0 of P^(2k+1) and P = A135880 begins: 1; 1, 1; 2, 2, 1; 6, 7, 3, 1; 25, 34, 15, 4, 1; 138, 215, 99, 26, 5, 1; 970, 1698, 814, 216, 40, 6, 1; ... where column k of P equals column 0 of R^(k+1).
Programs
-
PARI
{T(n,k)=local(P=Mat(1),R=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));R=P*PShR; R=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,R[r,c], if(c==1,(P^2)[ #P,1],(P^(2*c-1))[r-c+1,1])))); P=matrix(#R, #R, r,c, if(r>=c, if(r<#R,P[r,c], (R^c)[r-c+1,1])))));(R^4)[n+1,k+1]}
Formula
Column k of R^4 = column 3 of P^(2k+1) for k>=0 where triangle P = A135880; column 0 of R^4 = column 3 of P; column 1 of R^4 = column 3 of P^3; column 2 of R^4 = column 3 of P^5.
Comments