cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135914 a(n) = 4*3^n - 2*2^n - 1.

Original entry on oeis.org

1, 7, 27, 91, 291, 907, 2787, 8491, 25731, 77707, 234147, 704491, 2117571, 6360907, 19099107, 57330091, 172055811, 516298507, 1549157667, 4647997291, 13945040451, 41837218507, 125515849827, 376555938091, 1129684591491, 3389087328907, 10167329095587
Offset: 0

Views

Author

N. J. A. Sloane, Mar 07 2008

Keywords

References

  • G. S. Lueker, Some techniques for solving recurrences, Computing Surveys, 12 (1980), 419-436.

Crossrefs

Cf. A134067.

Programs

  • Mathematica
    Table[4*3^n-2*2^n-1,{n,0,30}] (* or *) LinearRecurrence[{6,-11,6},{1,7,27},30] (* Harvey P. Dale, Aug 26 2019 *)

Formula

From Gary W. Adamson, Mar 08 2008: (Start)
Inverse binomial transform = A134067: (1, 6, 14, 30, 62, 126, ...).
Second inverse binomial transform = (1, 5, 3, 5, 3, 5, 3, 5, ...). (End)
From Colin Barker, Aug 13 2012: (Start)
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3).
G.f.: (1+x-4*x^2)/((1-x)*(1-2*x)*(1-3*x)). (End)