A135939 Highest exponent occurring in the prime factorization of Fibonacci(n).
1, 1, 1, 3, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 6, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 7, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1
Offset: 3
Keywords
Examples
a(12) = 4 since Fibonacci(12) = 144 = 2^4 * 3^2.
Links
- Amiram Eldar, Table of n, a(n) for n = 3..1422
Programs
-
Maple
A051903 := proc(n) if n = 1 then 0 ; else max(seq(op(2,i),i=ifactors(n)[2])) ; fi ; end: A135939 := proc(n) A051903(combinat[fibonacci](n)) ; end: seq(A135939(n),n=3..120) ; # R. J. Mathar, Mar 16 2008
-
Mathematica
f[n_]:=Max[Last/@FactorInteger[n]];Table[f[Fibonacci[n]],{n,3,5!}] (* Vladimir Joseph Stephan Orlovsky, Apr 10 2010 *)
-
PARI
for(n=3,200,print1(vecmax(factor(fibonacci(n))[,2])",")) \\ Yolinda (yoliahmed33(AT)yandex.ru), Mar 27 2008
Formula
Extensions
More terms from R. J. Mathar and Yolinda (yoliahmed33(AT)yandex.ru), Mar 16 2008