cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A029713 Theta series of 6-dimensional 8-modular lattice of minimal norm 4.

Original entry on oeis.org

1, 0, 30, 56, 66, 144, 188, 288, 378, 448, 528, 504, 884, 1008, 1056, 1440, 1290, 1344, 1834, 1848, 2064, 2880, 2652, 3168, 3332, 2688, 3696, 3696, 4128, 5040, 5280, 5760, 5610, 5824, 6012, 5376, 7798, 8208, 7164, 10080, 8208, 8064, 10560, 8568, 10068
Offset: 0

Views

Author

Keywords

Comments

Associated with permutations in Mathieu group M24 of shape (8)^2(4)(2)(1)^2. - Michael Somos, Nov 24 2007

Examples

			G.f. = 1 + 30*x^2 + 56*x^3 + 66*x^4 + 144*x^5 + 188*x^6 + 288*x^7 + ...
G.f. = 1 + 30*q^4 + 56*q^6 + 66*q^8 + 144*q^10 + 188*q^12 + 288*q^14 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 3), 45); A[1] + 30*A[3] + 56*A[4] + 66*A[5] + 144*A[6] + 188*A[7]; /* Michael Somos, Apr 19 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ With[{e1 = QPochhammer[ x] QPochhammer[ x^8], e2 = QPochhammer[ x^2] QPochhammer[ x^4]}, e2^9 / e1^6 - 6 x e1^2 e2], {x, 0, n}]; (* Michael Somos, Apr 19 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x^2 + A) * eta(x^4 + A) )^9 / ( eta(x + A) * eta(x^8 + A) )^6 - 6 * x * ( eta(x + A) * eta(x^8 + A) )^2 * eta(x^2 + A) * eta(x^4 + A), n))}; /* Michael Somos, Nov 24 2007 */
    
  • PARI
    {a(n) = my(G); if( n<0, 0, G = [4, 1, -1, -1, 1, -1; 1, 4, 0, 1, 2, 1; -1, 0, 4, -1, 2, -1; -1, 1, -1, 4, -1, 0; 1, 2, 2, -1, 4, -1; -1, 1, -1, 0, -1, 4]; polcoeff( 1 + 2 * x * Ser(qfrep( G, n, 1)), n))}; /* Michael Somos, Nov 24 2007 */
    

Formula

G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = (512)^(1/2) (t/i)^3 f(t) where q = exp(2 Pi i t). - Michael Somos, Nov 24 2007
A136028(n) = a(n) + 6 * A030207(n). - Michael Somos, Apr 19 2015
Showing 1-1 of 1 results.