cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136081 Array, read by antidiagonals, numbers with an odd number of 1's in base k expansion.

Original entry on oeis.org

1, 1, 3, 1, 2, 5, 1, 3, 4, 7, 1, 4, 5, 7, 9, 1, 5, 6, 7, 8, 11, 1, 6, 7, 7, 9, 11, 13, 1, 7, 8, 8, 9, 11, 13, 15, 1, 8, 9, 9, 9, 13, 13, 14, 17, 1, 9, 10, 10, 10, 11, 16, 15, 16, 19, 1, 10, 11, 11, 11, 11, 16, 18, 17, 19, 21, 1, 11, 12, 12, 12, 12, 13, 21, 19, 19, 21, 23, 1, 12, 13, 13, 13
Offset: 1

Views

Author

Jonathan Vos Post, May 10 2008

Keywords

Comments

Infinite number of analogs (one per row) of odious numbers.

Examples

			The infinite array begins:
===================================================================
k=?.|.n=1.|.n=2.|.n=3.|.n=4.|.n=5.|.n=6.|.n=7.|.n=8.|.n=9.|.n=10.|
k=1.|..1..|..3..|..5..|..7..|..9..|.11..|.13..|.15..|.17..|..19..|A005408
k=2.|..1..|..2..|..4..|..7..|..8..|.11..|.13..|.14..|.16..|..19..|A000069
k=3.|..1..|..3..|..5..|..7..|..9..|.11..|.13..|.15..|.17..|..19..|A005408
k=4.|..1..|..4..|..6..|..7..|..9..|.13..|.16..|.18..|.19..|..21..|new
k=5.|..1..|..5..|..7..|..8..|..9..|.11..|.16..|.21..|.25..|..27..|A137469
k=6.|..1..|..6..|..8..|..9..|.10..|.11..|.13..|.19..|.25..|..31..|A138103
k=7.|..1..|..7..|..9..|.10..|.11..|.12..|.13..|.15..|.22..|..29..|new
k=8.|..1..|..8..|.10..|.11..|.12..|.13..|.14..|.15..|.17..|..25..|new
k=9.|..1..|..9..|.11..|.12..|.13..|.14..|.15..|.16..|.17..|..19..|new
k=10|..1..|.10..|.12..|.13..|.14..|.15..|.16..|.17..|.18..|..19..|new
===================================================================
		

Crossrefs

Programs

  • Maple
    od1 := proc(n,k) local ct1,d ; if k = 1 then RETURN( n mod 2 = 1) ; fi ; ct1 := 0 ; for d in convert(n,base,k) do if d = 1 then ct1 := ct1+1 ; fi ; od: RETURN(ct1 mod 2 = 1) ; end: A136081 := proc(k,n) option remember ; local a; if n = 1 then RETURN(1) ; else for a from A136081(k,n-1)+1 do if od1(a,k) then RETURN(a) ; fi ; od: fi ; end: for d from 1 to 15 do for n from 1 to d do printf("%d,", A136081(d+1-n,n)) ; od: od: # R. J. Mathar, May 17 2008

Formula

A(k,n) = n-th number with an odd number of 1's in base k expansion.

Extensions

Corrected and extended by R. J. Mathar, May 17 2008