cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A353250 a(0) = 1, a(n) = harmonic_mean(a(n-1), n), where harmonic_mean(p, q) = 2/(1/p + 1/q); numerators.

Original entry on oeis.org

1, 1, 4, 24, 48, 480, 960, 13440, 26880, 161280, 322560, 7096320, 14192640, 369008640, 738017280, 295206912, 590413824, 20074070016, 40148140032, 1525629321216, 15256293212160, 30512586424320, 61025172848640, 2807157951037440, 5614315902074880
Offset: 0

Views

Author

Vladimir Reshetnikov, Apr 08 2022

Keywords

Examples

			a(0) = 1,
a(1) = 2/(1/1 + 1/1) = 1,
a(2) = 2/(1/1 + 1/2) = 4/3,
a(3) = 2/(1/(4/3) + 1/3) = 24/13,
a(4) = 2/(1/(24/13) + 1/4) = 48/19, etc.
This sequence gives the numerators: 1, 1, 4, 24, 48, ...
		

Crossrefs

Cf. A353251 (denominators).
Cf. A003149, A136128, A191778 (has many terms in common), A241519, A242376.

Programs

  • Mathematica
    Table[1/(1/2^n - Re[LerchPhi[2, 1, n + 1]]), {n, 0, 24}] // Numerator (* or *)
    a[0] = 1; a[n_Integer] := a[n] = 2/(1/a[n-1] + 1/n); Table[a[n], {n, 0, 24}] // Numerator

Formula

a(n) = numerator(1/(1/2^n - Re(Phi(2, 1, n+1)))), where Phi(z, s, a) is the Lerch transcendent.

A353251 a(0) = 1, a(n) = harmonic_mean(a(n-1), n), where harmonic_mean(p, q) = 2/(1/p + 1/q); denominators.

Original entry on oeis.org

1, 1, 3, 13, 19, 143, 223, 2521, 4201, 21563, 37691, 737161, 1328521, 31463413, 57821173, 21404465, 39854897, 1267947073, 2383173185, 85428430547, 808549483039, 1535039635999, 2921975382559, 128230606647497, 245195521274057, 2348840786785261, 4508193056814061
Offset: 0

Views

Author

Vladimir Reshetnikov, Apr 08 2022

Keywords

Examples

			a(0) = 1,
a(1) = 2/(1/1 + 1/1) = 1,
a(2) = 2/(1/1 + 1/2) = 4/3,
a(3) = 2/(1/(4/3) + 1/3) = 24/13,
a(4) = 2/(1/(24/13) + 1/4) = 48/19, etc.
This sequence gives the denominators: 1, 1, 3, 13, 19, ...
		

Crossrefs

Cf. A353250 (numerators).

Programs

  • Mathematica
    Table[1/(1/2^n - Re[LerchPhi[2, 1, n + 1]]), {n, 0, 26}] // Denominator (* or *)
    a[0] = 1; a[n_Integer] := a[n] = 2/(1/a[n-1] + 1/n); Table[a[n], {n, 0, 26}] // Denominator

Formula

a(n) = denominator(1/(1/2^n - Re(Phi(2, 1, n+1)))), where Phi(z, s, a) is the Lerch transcendent.

A357591 Expansion of e.g.f. (exp(x) - 1) * tan((exp(x) - 1)/2).

Original entry on oeis.org

0, 0, 1, 3, 8, 25, 99, 476, 2643, 16575, 116002, 895719, 7554311, 69051034, 679913073, 7174562327, 80765185416, 966076987581, 12235992073975, 163590477924708, 2302288709067167, 34021599945907915, 526690307104399482, 8524372522971447683, 143963947160570293851
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 05 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(Exp[x] - 1)*Tan[(Exp[x] - 1)/2] , {x, 0, nmax}], x] * Range[0, nmax]!
    Table[2*Sum[(-1)^k * StirlingS2[n, 2*k] * (1 - 4^k) * BernoulliB[2*k], {k, 0, n/2}], {n, 0, 20}]
  • PARI
    my(N=30, x='x+O('x^N)); concat([0, 0], Vec(serlaplace((exp(x)-1)*tan((exp(x)-1)/2)))) \\ Seiichi Manyama, Oct 05 2022

Formula

a(n) = 2 * Sum_{k=0..floor(n/2)} (-1)^k * Stirling2(n,2*k) * (1 - 4^k) * Bernoulli(2*k).
a(n) ~ n! * 2*Pi / ((Pi+1) * (log(1+Pi))^(n+1)).

A357594 Expansion of e.g.f. log(1-x) * tan(log(1-x)/2).

Original entry on oeis.org

0, 0, 1, 3, 12, 60, 362, 2562, 20820, 191088, 1955020, 22061380, 272197160, 3645227040, 52656804440, 816114251400, 13508168448400, 237805776169600, 4436759277524400, 87445191383773200, 1815460566861236000, 39600109151685600000, 905416958295793788000
Offset: 0

Views

Author

Seiichi Manyama, Oct 05 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); concat([0, 0], Vec(serlaplace(log(1-x)*tan(log(1-x)/2))))
    
  • PARI
    a(n) = 2*sum(k=0, n\2, (-1)^k*(1-4^k)*abs(stirling(n, 2*k, 1))*bernfrac(2*k));

Formula

a(n) = 2 * Sum_{k=0..floor(n/2)} (-1)^k * (1-4^k) * |Stirling1(n,2*k)| * Bernoulli(2*k).
a(n) ~ n! * 2*Pi / (exp(Pi) * (1 - exp(-Pi))^(n+1)). - Vaclav Kotesovec, Oct 05 2022
Showing 1-4 of 4 results.