Original entry on oeis.org
1, 1, 3, 19, 310, 10978, 868140, 149688297, 57339888914, 49349265481439, 97121874114574056, 443452539940740460176, 4761916627762078978228971, 121633155493441873035613043864, 7462643123890754031039350760255218
Offset: 0
-
/* Generate using matrix power method: */ a(n)=local(A=Mat(1), B); for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, B[i, j]=(A^(fibonacci(i-1)))[i-1, j]); )); A=B); return( ((A)[n+1, 1]))
-
/* Generate using partial sums method: */ a(n)=local(A=vector(n+1), p); A[1]=1; for(j=1, n, p=fibonacci(n+2)-fibonacci(n-j+2)-j; A=Vec((Polrev(A)+x*O(x^p))/(1-x))); A[ #A]
Original entry on oeis.org
1, 2, 9, 105, 2702, 154609, 19092682, 5161046609, 3089394167519, 4175309542037953, 12956948188014836324, 93772653247517510010693, 1603175184493001749597050954, 65450800470044797091307950768285
Offset: 0
-
/* Generate using matrix power method: */ a(n)=local(A=Mat(1), B); for(m=1, n+2, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, B[i, j]=(A^(fibonacci(i-1)))[i-1, j]); )); A=B); return( ((A)[n+2, 2]))
-
/* Generate using partial sums method: */ a(n)=local(A=vector(n+1), p); A[1]=1; for(j=1, n, p=fibonacci(n+3)-fibonacci(n-j+3)-j; A=Vec((Polrev(A)+x*O(x^p))/(1-x))); A[ #A]
Original entry on oeis.org
1, 3, 25, 480, 20657, 1906051, 378639419, 163267272113, 155845755656250, 335843460383424796, 1664976879959626195703, 19289660262281670383124691, 529079225669745804554669074826, 34719352972951195290492954195861372
Offset: 0
-
/* Generate using matrix power method: */ a(n)=local(A=Mat(1), B); for(m=1, n+3, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, B[i, j]=(A^(fibonacci(i-1)))[i-1, j]); )); A=B); return( ((A)[n+3, 3]))
-
/* Generate using partial sums method: */ a(n)=local(A=vector(n+1), p); A[1]=1; for(j=1, n, p=fibonacci(n+4)-fibonacci(n-j+4)-j; A=Vec((Polrev(A)+x*O(x^p))/(1-x))); A[ #A]
Showing 1-3 of 3 results.