cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136192 Primes p such that 2p-3 and 2p+3 are both prime (A092110), with last decimal of p being 7.

Original entry on oeis.org

7, 17, 67, 97, 127, 137, 157, 167, 487, 547, 617, 647, 937, 1187, 1277, 1427, 1627, 1847, 2027, 2297, 2437, 2467, 2477, 2617, 2857, 2927, 3137, 3457, 3727, 4007, 4057, 4157, 5167, 5417, 5657, 6247, 6257, 7027, 7477, 7867, 8467, 8737, 8747, 9127, 9227
Offset: 1

Views

Author

Carlos Alves, Dec 20 2007

Keywords

Comments

Except for p=5, the decimals in A092110 end in 3 or 7.
Theorem: If in the triple (2n-3,n,2n+3) all numbers are primes then n=5 or the decimal representation of n ends in 3 or 7. Proof: Consider Q=(2n-3)n(2n+3), by hypothesis factorized into primes. If n is prime, n=10k+r with r=1,3,7 or 9. We want to exclude r=1 and r=9. Case n=10k+1. Then Q=5(-1+6k+240k^2+800k^3) and 5 is a factor; thus 2n-3=5 or n=5 or 2n+1=5 : this means n=4 (not prime); or n=5 (included); or n=2 (impossible, because 2n-3=1). Case n=10k+9. Then Q=5(567+1926k+2160k^2+800k^3) and 5 is a factor; the arguments, for the previous case, also hold.

Crossrefs

Programs

  • Mathematica
    bpQ[n_]:=Last[IntegerDigits[n]]==7&&And@@PrimeQ[2n+{3,-3}]; Select[Prime[ Range[1200]],bpQ] (* Harvey P. Dale, Sep 25 2013 *)

Extensions

Definition clarified by Harvey P. Dale, Sep 25 2013