cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136212 Triple factorial array, read by antidiagonals, where row n+1 is generated from row n by first removing terms in row n at positions {[m*(m+5)/6], m >= 0} and then taking partial sums, starting with all 1's in row 0.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 28, 10, 3, 1, 280, 80, 18, 4, 1, 3640, 880, 162, 28, 5, 1, 58240, 12320, 1944, 280, 39, 6, 1, 1106560, 209440, 29160, 3640, 418, 52, 7, 1, 24344320, 4188800, 524880, 58240, 5714, 600, 66, 8, 1, 608608000, 96342400, 11022480, 1106560, 95064
Offset: 0

Views

Author

Paul D. Hanna, Dec 22 2007

Keywords

Comments

This is the triple factorial variant of Moessner's factorial array described by A125714 and also of the double factorial array A135876. Another very interesting variant is A136217.

Examples

			Square array begins:
(1),(1),(1),1,(1),1,(1),1,(1),1,1,(1),1,1,(1),1,1,(1),1,1,1,(1),1,1,1,...;
(1),(2),(3),4,(5),6,(7),8,(9),10,11,(12),13,14,(15),16,17,(18),19,20,21,..;
(4),(10),(18),28,(39),52,(66),82,(99),118,138,(159),182,206,(231),258,286,..;
(28),(80),(162),280,(418),600,(806),1064,(1350),1696,2074,(2485),2966,3484,..;
(280),(880),(1944),3640,(5714),8680,(12164),16840,(22194),29080,36824,(45474),.;
(3640),(12320),(29160),58240,(95064),151200,(219108),315440,(428652),581680,...;
(58240),(209440),(524880),1106560,(1864456),3082240,...;
where terms in parenthesis are at positions {[m*(m+5)/6], m>=0}
and are removed before taking partial sums to obtain the next row.
To generate the array, start with all 1's in row 0; from then on,
obtain row n+1 from row n by first removing terms in row n at
positions {[m*(m+5)/6], m>=0} and then taking partial sums.
For example, to generate row 2 from row 1:
[(1),(2),(3),4,(5),6,(7),8,(9),10,11,(12),13,14,(15),16,17,(18),...],
remove terms at positions [0,1,2,4,6,8,11,14,17,...] to get:
[4, 6, 8, 10,11, 13,14, 16,17, 19,20,21, 23,24,25, 27,28,29, ...]
then take partial sums to obtain row 2:
[4, 10, 18, 28,39, 52,66, 82,99, 118,138,159, 182,206,231, ...].
Continuing in this way will generate all the rows of this array.
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := t[n, k] = Module[{a = 0, m = 0, c = 0, d = 0}, If[n == 0, a = 1, While[d <= k, If[c == Quotient[(m*(m + 5)), 6], m += 1, a += t[n - 1, c]; d += 1]; c += 1]]; a]; Table[t[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 06 2013, translated from Pari *)
  • PARI
    {T(n, k)=local(A=0, m=0, c=0, d=0); if(n==0, A=1, until(d>k, if(c==(m*(m+5))\6, m+=1, A+=T(n-1, c); d+=1); c+=1)); A}

Formula

Columns 0, 1 and 2 form the triple factorials A007559, A008544 and A032031, respectively. Column 4 equals A024216; column 6 equals A024395.