cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136217 Square array, read by antidiagonals, where row n+1 is generated from row n by first removing terms in row n at positions {floor(m*(m+7)/6), m>=0} and then taking partial sums, starting with all 1's in row 0.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 15, 8, 3, 1, 108, 49, 15, 4, 1, 1036, 414, 108, 24, 5, 1, 12569, 4529, 1036, 198, 34, 6, 1, 185704, 61369, 12569, 2116, 306, 46, 7, 1, 3247546, 996815, 185704, 28052, 3493, 453, 59, 8, 1, 65762269, 18931547, 3247546, 446560, 48800, 5555, 622, 74, 9, 1
Offset: 0

Views

Author

Paul D. Hanna, Dec 23 2007

Keywords

Comments

A variant of the triple factorial array A136212. Compare to triangle array A136218, which is generated by a complementary process.

Examples

			Square array begins:
(1),(1),1,(1),1,(1),1,(1),1,1,(1),1,1,(1),1,1,(1),1,1,(1),1,1,1,(1),...;
(1),(2),3,(4),5,(6),7,(8),9,10,(11),12,13,(14),15,16,(17),18,19,20,(21),..;
(3),(8),15,(24),34,(46),59,(74),90,108,(127),147,169,(192),216,242,(269),..;
(15),(49),108,(198),306,(453),622,(838),1080,1377,(1704),2062,2485,(2943),..;
(108),(414),1036,(2116),3493,(5555),8040,(11477),15483,20748,(26748),33528,..;
(1036),(4529),12569,(28052),48800,(82328),124335,(186261),260856,364551,..;
(12569),(61369),185704,(446560),811111,(1438447),2250731,(3513569),5078154,..;
(185704),(996815),3247546,(8325700),15684001,(29039188),46830722,...;
(3247546),(18931547),65762269,(178284892),346583419,...;
(65762269),(412345688),1515642725,(4317391240),...; ...
where terms in parenthesis are at positions {floor(m*(m+7)/6), m>=0} and are removed before taking partial sums to obtain the next row.
To generate the array, start with all 1's in row 0; from then on, obtain row n+1 from row n by first removing terms in row n at positions {floor(m*(m+7)/6), m>=0} and then taking partial sums.
For example, to generate row 2 from row 1:
[(1),(2),3,(4),5,(6),7,(8),9,10,(11),12,13,(14),15,16,(17),18,...],
remove terms at positions [0,1,3,5,7,10,13,16,20,...] to get:
[3, 5, 7, 9,10, 12,13, 15,16, 18,19,20, 22,23,24, 26,27,28,...]
then take partial sums to obtain row 2:
[3,8,15,24,34,46,59,74,90,108,127,147,169,192,216,242,269,...].
Continuing in this way will generate all the rows of this array.
Amazingly, column 0 of this array = column 0 of triangle P=A136220:
       1;
       1,      1;
       3,      2,     1;
      15,     10,     3,    1;
     108,     75,    21,    4,   1;
    1036,    753,   208,   36,   5,  1;
   12569,   9534,  2637,  442,  55,  6, 1;
  185704, 146353, 40731, 6742, 805, 78, 7, 1; ...
where column k of P^3 = column 0 of P^(3k+3) such that column 0 of P^3 = column 0 of P shift one place left.
		

Crossrefs

Cf. columns: A136221, A136226, A136229; related tables: A136220 (P), A136226 (P^2), A136232 (P^4).

Programs

  • Mathematica
    nmax = 9;
    row[0] = Table[1, {nmax^2}];
    row[n_] := row[n] = Accumulate[Delete[row[n-1], Table[{Floor[m((m+7)/6)+1] }, {m, 0, (1/2)(-7 + Sqrt[1 + 24 Length[row[n-1]]]) // Floor}]]];
    R = row /@ Range[0, nmax];
    T[n_, k_] := R[[n+1, k+1]];
    Table[T[n-k, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 06 2019 *)
  • PARI
    {T(n, k)=local(A=0, m=0, c=0, d=0); if(n==0, A=1, until(d>k, if(c==(m*(m+7))\6, m+=1, A+=T(n-1, c); d+=1); c+=1)); A}

Formula

Let triangular matrix P = A136220, then: column 0 (A136221) = column 0 of P; column 1 (A136226) = column 0 of P^2; column 3 (A136229) = column 0 of P^4.