A136221 Column 0 of triangles A136220 and A136228; also equals column 0 of tables A136217 and A136218.
1, 1, 3, 15, 108, 1036, 12569, 185704, 3247546, 65762269, 1515642725, 39211570981, 1125987938801, 35554753133312, 1224882431140838, 45731901253649898, 1839804317195739634, 79355626796692509253, 3653687500034925338348
Offset: 0
Keywords
Examples
Equals column 0 of triangle P=A136220, which begins: 1; 1, 1; 3, 2, 1; 15, 10, 3, 1; 108, 75, 21, 4, 1; 1036, 753, 208, 36, 5, 1; 12569, 9534, 2637, 442, 55, 6, 1; 185704, 146353, 40731, 6742, 805, 78, 7, 1; ... where column k of P^3 = column 0 of P^(3k+3) such that column 0 of P^3 = column 0 of P shift one place left. Surprisingly, column 0 of P is also found in square A136218: (1),(1),1,(1),1,(1),1,(1),1,1,(1),1,1,(1),1,1,(1),1,1,1,(1),...; (1),(2),3,(4),5,(6),7,(8),9,10,(11),12,13,(14),15,16,(17),...; (3),(8),15,(24),34,(46),59,(74),90,108,(127),147,169,(192),...; (15),(49),108,(198),306,(453),622,(838),1080,1377,(1704),...; (108),(414),1036,(2116),3493,(5555),8040,(11477),15483,...; (1036),(4529),12569,(28052),48800,(82328),124335,(186261),...; (12569),(61369),185704,(446560),811111,(1438447),2250731,...; ... and has a recurrence similar to that of square array A136212 which generates the triple factorials.
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..90
Crossrefs
Programs
-
PARI
/* Generate using matrix product recurrences of triangle A136220: */ {a(n)=local(P=Mat(1),U,PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));P[n+1,1]}
-
PARI
/* Generated as column 0 in triangle A136218 (faster): */ {a(n)=local(A=[1],B);if(n>0,for(i=1,n,m=1;B=[0]; for(j=1,#A,if(j+m-1==(m*(m+7))\6,m+=1;B=concat(B,0));B=concat(B,A[j])); A=Vec(Polrev(Vec(Pol(B)/(1-x+O(x^#B)))))));A[1]}
Comments