A136225 Matrix square of triangle A136220, read by rows.
1, 2, 1, 8, 4, 1, 49, 26, 6, 1, 414, 232, 54, 8, 1, 4529, 2657, 629, 92, 10, 1, 61369, 37405, 9003, 1320, 140, 12, 1, 996815, 627435, 153276, 22606, 2385, 198, 14, 1, 18931547, 12248365, 3031553, 450066, 47500, 3904, 266, 16, 1, 412345688, 273211787
Offset: 0
Examples
Let P = A136220, then this triangle is P^2 and begins: 1; 2, 1; 8, 4, 1; 49, 26, 6, 1; 414, 232, 54, 8, 1; 4529, 2657, 629, 92, 10, 1; 61369, 37405, 9003, 1320, 140, 12, 1; 996815, 627435, 153276, 22606, 2385, 198, 14, 1; 18931547, 12248365, 3031553, 450066, 47500, 3904, 266, 16, 1; ... where column k of P^2 = column 0 of V^(k+1) and triangle V = A136230 begins: 1; 2, 1; 8, 5, 1; 49, 35, 8, 1; 414, 325, 80, 11, 1; 4529, 3820, 988, 143, 14, 1; 61369, 54800, 14696, 2200, 224, 17, 1; ... where column k of V = column 0 of P^(3k+2). Triangle P = A136220 begins: 1; 1, 1; 3, 2, 1; 15, 10, 3, 1; 108, 75, 21, 4, 1; 1036, 753, 208, 36, 5, 1; 12569, 9534, 2637, 442, 55, 6, 1; 185704, 146353, 40731, 6742, 805, 78, 7, 1; ... where column k of P = column 0 of U^(k+1) and U = A136228.
Crossrefs
Programs
-
PARI
{T(n,k)=local(P=Mat(1),U,PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));(P^2)[n+1,k+1]}
Comments