cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136231 Triangle W, read by rows, where column k of W = column 0 of W^(k+1) for k>=0 such that W equals the matrix cube of P = A136220 with column 0 of W = column 0 of P shift up one row.

Original entry on oeis.org

1, 3, 1, 15, 6, 1, 108, 48, 9, 1, 1036, 495, 99, 12, 1, 12569, 6338, 1323, 168, 15, 1, 185704, 97681, 21036, 2754, 255, 18, 1, 3247546, 1767845, 390012, 52204, 4950, 360, 21, 1, 65762269, 36839663, 8287041, 1128404, 108860, 8073, 483, 24, 1, 1515642725
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2008

Keywords

Comments

This triangle W is the column transform for triangles U=A136228 and V=A136230: W * [column k of U] = column k+1 of U and W * [column k of V] = column k+1 of V, for k>=0.

Examples

			Triangle W begins:
1;
3, 1;
15, 6, 1;
108, 48, 9, 1;
1036, 495, 99, 12, 1;
12569, 6338, 1323, 168, 15, 1;
185704, 97681, 21036, 2754, 255, 18, 1;
3247546, 1767845, 390012, 52204, 4950, 360, 21, 1;
65762269, 36839663, 8287041, 1128404, 108860, 8073, 483, 24, 1; ...
where column k of W = column 0 of W^(k+1) such that W = P^3
and triangle P = A136220 begins:
1;
1, 1;
3, 2, 1;
15, 10, 3, 1;
108, 75, 21, 4, 1;
1036, 753, 208, 36, 5, 1;
12569, 9534, 2637, 442, 55, 6, 1; ...
where column k of P^3 = column 0 of P^(3k+3) such that
column 0 of P^3 = column 0 of P shift up one row.
Also, this triangle W equals the matrix product:
W = V * [V shift down one row]
where triangle V = A136230 begins:
1;
2, 1;
8, 5, 1;
49, 35, 8, 1;
414, 325, 80, 11, 1;
4529, 3820, 988, 143, 14, 1;
61369, 54800, 14696, 2200, 224, 17, 1; ...
and V shift down one row begins:
1;
1, 1;
2, 1, 1;
8, 5, 1, 1;
49, 35, 8, 1, 1;
414, 325, 80, 11, 1, 1;
4529, 3820, 988, 143, 14, 1, 1; ...
		

Crossrefs

Cf. A136221 (column 0); related tables: A136220 (P), A136225 (P^2), A136228 (U), A136230 (V), A136235 (W^2), A136238 (W^3); A136217, A136218.

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),U=Mat(1),W=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1])))); U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1]))); W=P^3;));W[n+1,k+1]}