A136234 Matrix square of triangle V = A136230, read by rows.
1, 4, 1, 26, 10, 1, 232, 110, 16, 1, 2657, 1435, 248, 22, 1, 37405, 22135, 4240, 440, 28, 1, 627435, 397820, 81708, 9295, 686, 34, 1, 12248365, 8203057, 1773156, 214478, 17248, 986, 40, 1, 273211787, 191405232, 43039532, 5442349, 463267, 28747, 1340
Offset: 0
Examples
This triangle, V^2, begins: 1; 4, 1; 26, 10, 1; 232, 110, 16, 1; 2657, 1435, 248, 22, 1; 37405, 22135, 4240, 440, 28, 1; 627435, 397820, 81708, 9295, 686, 34, 1; 12248365, 8203057, 1773156, 214478, 17248, 986, 40, 1; 273211787, 191405232, 43039532, 5442349, 463267, 28747, 1340, 46, 1; ... where column 0 of V^2 = column 1 of P^2 = triangle A136225.
Crossrefs
Programs
-
PARI
{T(n,k)=local(P=Mat(1),U=Mat(1),V=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1])))); U=P*PShR^2;V=P^2*PShR; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); V=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,V[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-2))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1]))))); (V^2)[n+1,k+1]}
Formula
Column k of V^2 (this triangle) = column 1 of P^(3k+2), where P = triangle A136220.