A136231 Triangle W, read by rows, where column k of W = column 0 of W^(k+1) for k>=0 such that W equals the matrix cube of P = A136220 with column 0 of W = column 0 of P shift up one row.
1, 3, 1, 15, 6, 1, 108, 48, 9, 1, 1036, 495, 99, 12, 1, 12569, 6338, 1323, 168, 15, 1, 185704, 97681, 21036, 2754, 255, 18, 1, 3247546, 1767845, 390012, 52204, 4950, 360, 21, 1, 65762269, 36839663, 8287041, 1128404, 108860, 8073, 483, 24, 1, 1515642725
Offset: 0
Examples
Triangle W begins: 1; 3, 1; 15, 6, 1; 108, 48, 9, 1; 1036, 495, 99, 12, 1; 12569, 6338, 1323, 168, 15, 1; 185704, 97681, 21036, 2754, 255, 18, 1; 3247546, 1767845, 390012, 52204, 4950, 360, 21, 1; 65762269, 36839663, 8287041, 1128404, 108860, 8073, 483, 24, 1; ... where column k of W = column 0 of W^(k+1) such that W = P^3 and triangle P = A136220 begins: 1; 1, 1; 3, 2, 1; 15, 10, 3, 1; 108, 75, 21, 4, 1; 1036, 753, 208, 36, 5, 1; 12569, 9534, 2637, 442, 55, 6, 1; ... where column k of P^3 = column 0 of P^(3k+3) such that column 0 of P^3 = column 0 of P shift up one row. Also, this triangle W equals the matrix product: W = V * [V shift down one row] where triangle V = A136230 begins: 1; 2, 1; 8, 5, 1; 49, 35, 8, 1; 414, 325, 80, 11, 1; 4529, 3820, 988, 143, 14, 1; 61369, 54800, 14696, 2200, 224, 17, 1; ... and V shift down one row begins: 1; 1, 1; 2, 1, 1; 8, 5, 1, 1; 49, 35, 8, 1, 1; 414, 325, 80, 11, 1, 1; 4529, 3820, 988, 143, 14, 1, 1; ...
Crossrefs
Programs
-
PARI
{T(n,k)=local(P=Mat(1),U=Mat(1),W=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1])))); U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1]))); W=P^3;));W[n+1,k+1]}
Comments