A136237 Matrix cube of triangle V = A136230, read by rows.
1, 6, 1, 54, 15, 1, 629, 225, 24, 1, 9003, 3770, 504, 33, 1, 153276, 71655, 10988, 891, 42, 1, 3031553, 1539315, 259236, 23903, 1386, 51, 1, 68406990, 37072448, 6688092, 672672, 44135, 1989, 60, 1, 1736020806, 992226060, 188767184, 20225436, 1442049
Offset: 0
Examples
This triangle, V^3, begins: 1; 6, 1; 54, 15, 1; 629, 225, 24, 1; 9003, 3770, 504, 33, 1; 153276, 71655, 10988, 891, 42, 1; 3031553, 1539315, 259236, 23903, 1386, 51, 1; 68406990, 37072448, 6688092, 672672, 44135, 1989, 60, 1; 1736020806, 992226060, 188767184, 20225436, 1442049, 73304, 2700, 69, 1; where column 0 of V^3 = column 2 of P^2 = triangle A136225.
Crossrefs
Programs
-
PARI
{T(n,k)=local(P=Mat(1),U=Mat(1),V=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1])))); U=P*PShR^2;V=P^2*PShR; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); V=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,V[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-2))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));(V^3)[n+1,k+1]}
Formula
Column k of V^3 (this triangle) = column 2 of P^(3k+2), where P = triangle A136220.