A136238 Matrix cube of triangle W = A136231; also equals P^9, where P = triangle A136220.
1, 9, 1, 99, 18, 1, 1323, 306, 27, 1, 21036, 5643, 621, 36, 1, 390012, 115917, 14580, 1044, 45, 1, 8287041, 2657946, 366129, 29754, 1575, 54, 1, 198918840, 67708113, 9968067, 882318, 52785, 2214, 63, 1, 5329794042, 1903562412, 294952140
Offset: 0
Examples
This triangle, W^3, begins: 1; 9, 1; 99, 18, 1; 1323, 306, 27, 1; 21036, 5643, 621, 36, 1; 390012, 115917, 14580, 1044, 45, 1; 8287041, 2657946, 366129, 29754, 1575, 54, 1; 198918840, 67708113, 9968067, 882318, 52785, 2214, 63, 1; 5329794042, 1903562412, 294952140, 27779046, 1804290, 85293, 2961, 72, 1; where column 0 of W^3 = column 2 of W = triangle A136231.
Programs
-
PARI
{T(n,k)=local(P=Mat(1),U=Mat(1),W=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1])))); U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1]))); W=P^3;));(W^3)[n+1,k+1]}
Formula
Column k of W^3 (this triangle) = column 2 of W^(k+1), where W = P^3 and P = triangle A136220.