A136277 From the binary representation of n: binomial(number of ones, number of blocks of contiguous ones).
1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 3, 2, 3, 3, 4, 1, 1, 1, 3, 1, 1, 3, 6, 2, 3, 3, 6, 3, 6, 4, 5, 1, 1, 1, 3, 1, 1, 3, 6, 1, 1, 1, 4, 3, 4, 6, 10, 2, 3, 3, 6, 3, 4, 6, 10, 3, 6, 6, 10, 4, 10, 5, 6, 1, 1, 1, 3, 1, 1, 3, 6, 1, 1, 1, 4, 3, 4, 6, 10, 1, 1, 1, 4, 1, 1, 4, 10, 3, 4, 4, 10, 6, 10, 10, 15, 2, 3, 3, 6
Offset: 0
Links
Programs
-
Maple
A000120 := proc(n) local i ; add(i,i=convert(n,base,2)) ; end: A069010 := proc(n) local b,c,i ; if n = 0 then RETURN(0) ; fi ; b := convert(n,base,2) ; c := 0 ; if nops(b) > 1 then for i from 1 to nops(b) do if op(i,b) <> op(i-1,b) then c := c+1 ; fi ; od: fi ; op(1,b)+floor(c/2) ; end: A136277 := proc(n) binomial(A000120(n),A069010(n)) ; end: seq(A136277(n),n=0..120) ; # R. J. Mathar, Apr 01 2008
-
Mathematica
f[n_] := Block[{id = IntegerDigits[n, 2]}, Binomial[ Count[id, 1], Floor[(Length@ Split@ id + 1)/2]]]; Array[f, 100] (* Robert G. Wilson v *)
Formula
Extensions
More terms from R. J. Mathar and Robert G. Wilson v, Apr 01 2008
Comments