cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136282 Number of graphs on n labeled nodes with degree at most 3.

Original entry on oeis.org

1, 2, 8, 64, 768, 12068, 236926, 5651384, 160054952, 5284391984, 200375581984, 8620342917808, 416471882713712, 22400989824444576, 1331457489258580672, 86887134810544955072, 6189888588922841477824, 478992737680928902742656, 40082045451011806706919808, 3612470757307682016196841216, 349398857659776033845292636416
Offset: 1

Views

Author

Don Knuth, Mar 31 2008

Keywords

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.

Crossrefs

Cf. A000085 (degree at most 1), A136281-A136286.

Formula

Binomial transform of A110041. - Vladeta Jovovic, May 20 2008
Recurrence: 12*(81*n^4 - 837*n^3 + 3375*n^2 - 6171*n + 4192)*a(n) = 6*(243*n^5 - 2511*n^4 + 10665*n^3 - 21969*n^2 + 19476*n - 4624)*a(n-1) + 3*(n-1)*(243*n^6 - 2997*n^5 + 15147*n^4 - 39843*n^3 + 57594*n^2 - 41832*n + 10888)*a(n-2) - 3*(n-2)*(n-1)*(405*n^5 - 3699*n^4 + 13527*n^3 - 22629*n^2 + 14048*n + 388)*a(n-3) + (n-3)*(n-2)*(n-1)*(243*n^5 - 1944*n^4 + 6777*n^3 - 9738*n^2 - 2370*n + 10732)*a(n-4) + 2*(n-4)*(n-3)*(n-2)*(n-1)*(81*n^4 - 999*n^3 + 4968*n^2 - 8646*n + 4906)*a(n-5) + (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(243*n^5 - 2916*n^4 + 12933*n^3 - 27990*n^2 + 27978*n - 8948)*a(n-6) - (n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(81*n^4 - 513*n^3 + 891*n^2 - 357*n - 242)*a(n-7) - (n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(81*n^4 - 513*n^3 + 1350*n^2 - 1608*n + 640)*a(n-8). - Vaclav Kotesovec, Aug 13 2013
a(n) ~ 3^(n/2) * exp(sqrt(3*n) - 3*n/2 - 5/4) * n^(3*n/2) / 2^(n + 1/2) * (1 + 71/(24*sqrt(3*n))). - Vaclav Kotesovec, Nov 05 2023
a(n) / A110041(n) ~ 1 + 2/sqrt(3*n). - Vaclav Kotesovec, Nov 06 2023

Extensions

More terms from Vladeta Jovovic, May 20 2008