cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136294 Primes of the form a^a + b^b + c^c + d^d + e^e + f^f.

Original entry on oeis.org

41, 47, 61, 67, 113, 139, 293, 313, 571, 797, 823, 1307, 3191, 3391, 3463, 3643, 3947, 4153, 6257, 6263, 6793, 7019, 9433, 12757, 15629, 15881, 46687, 46919, 46997, 47681, 49811, 49843, 50069, 50321, 53419, 56039, 56543, 59183, 93319
Offset: 1

Views

Author

Jonathan Vos Post, Apr 11 2008

Keywords

Examples

			a(1) = 41 = 1^1 + 1^1 + 2^2 + 2^2 + 2^2 + 3^3.
a(2) = 47 = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^3.
a(3) = 61 = 1^1 + 1^1 + 1^1 + 2^2 + 3^3 + 3^3.
a(4) = 67 = 1^1 + 2^2 + 2^2 + 2^2 + 3^3 + 3^3.
a(5) = 113 = 1^1 + 2^2 + 3^3 + 3^3 + 3^3 + 3^3.
		

Crossrefs

Programs

  • Mathematica
    Select[Union[ Flatten[Table[ a^a + b^b + c^c + d^d + e^e + f^f, {a, 1, 20}, {b, 1, a}, {c, 1, b}, {d, 1, c}, {e, 1, d}, {f, 1, e}]]], PrimeQ]
  • PARI
    v=[]; for(a=1, 30, for(b=1, a, for(c=1, b, for(d=1, c, for(e=1, d, for(f=1, e, if(ispseudoprime(t=a^a+b^b+c^c+d^d+e^e+f^f), v=concat(v, t)))))))); #v \\ Charles R Greathouse IV, Feb 15 2011

Formula

A000040 INTERSECTION {A000312(a) + A000312(b) + A000312(c) + A000312(d) + A000312(e) + A000312(f)}.