A136296 "Special augmented primes": primes p such that the decimal number 1p1 is divisible by p.
11, 13, 137, 9091, 909091, 5882353, 909090909090909091, 909090909090909090909090909091, 9090909090909090909090909090909090909090909090909091, 909090909090909090909090909090909090909090909090909090909090909091
Offset: 1
Examples
11371/137 = 83, an integer, so the prime 137 is a term.
References
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 61.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..12 (all terms with <= 1000 digits)
Crossrefs
Prime members of A116436.
Programs
-
Mathematica
max=6; a={}; For[i=1, i<=10^max, i++, If[Mod[FromDigits[Join[{1}, IntegerDigits[Prime[i]], {1}]], Prime[i]] == 0, AppendTo[a, Prime[i]]]]; a (* Stefano Spezia, Mar 26 2023 *)
-
PARI
A136296k(k) = { local(l, d, lb, ub); d=factor(10^(k+1)+1)[,1]; l=[]; lb=10^(k-1); ub=10*lb; for(i=1,#d,if(d[i]>=lb&&d[i]
A136296k(k))) \\ Franklin T. Adams-Watters, Apr 23 2008 -
Python
from sympy import isprime from itertools import count, islice def agen(): # generator of terms for k in count(2): t = 10**(k+1) + 1 d = [t//i for i in range(100, 10, -1) if t%i == 0] yield from (di for di in d if isprime(di)) print(list(islice(agen(), 8))) # Michael S. Branicky, Mar 26 2023 following Franklin T. Adams-Watters but removing factorization
Extensions
a(4)-a(6) from M. F. Hasler, Apr 22 2008
a(7)-a(9) from Franklin T. Adams-Watters, Apr 23 2008
a(10) from Michael S. Branicky, Mar 26 2023
Comments