A136312 Cubes that are the sum of two or more consecutive positive squares.
103823, 274625, 781229961, 10091699281, 22425768000, 1853614522304, 2277044900416, 4708686519081, 6168761704000, 82312875000000, 235125028708361, 259266910222125, 269648738245125, 291658484677013, 980893000925279, 1568173521032000, 1816249897646729
Offset: 1
Keywords
Examples
From _Donovan Johnson_, Aug 02 2013: (Start) 103823 = 47^3 = 22^2 +...+ 68^2 274625 = 65^3 = 90^2 +...+ 115^2 781229961 = 921^3 = 2115^2 +...+ 2276^2 10091699281 = 2161^3 = 989^2 +...+ 3149^2 22425768000 = 2820^3 = 261^2 +...+ 4067^2 1853614522304 = 12284^3 = 23017^2 +...+ 26087^2 2277044900416 = 13156^3 = 17354^2 +...+ 22930^2 4708686519081 = 16761^3 = 24978^2 +...+ 30971^2 6168761704000 = 18340^3 = 125090^2 +...+ 125482^2 82312875000000 = 43500^3 = 83868^2 +...+ 94235^2 235125028708361 = 61721^3 = 24079^2 +...+ 89600^2 259266910222125 = 63765^3 = 64791^2 +...+ 101632^2 269648738245125 = 64605^3 = 248058^2 +...+ 252364^2 291658484677013 = 66317^3 = 189432^2 +...+ 197233^2 980893000925279 = 99359^3 = 45450^2 +...+ 144808^2 1568173521032000 = 116180^3 = 239806^2 +...+ 264454^2 1816249897646729 = 122009^3 = 279608^2 +...+ 301138^2 (End) From _Chai Wah Wu_, Jan 16 2016: (Start) 3164933091345661 = 146821^3 = 77289^2 +...+ 215130^2 4047882458821811 = 159371^3 = 84755^2 +...+ 233631^2 17609483239992125 = 260165^3 = 254786^2 +...+ 410884^2 19593033022705472 = 269588^3 = 250354^2 +...+ 420721^2 31231769524613559 = 314919^3 = 927208^2 +...+ 962198^2 65514186944297000 = 403130^3 = 1033993^2 +...+ 1091959^2 143956092348157375 = 524095^3 = 1015471^2 +...+ 1139347^2 329053482838576341 = 690381^3 = 52911^2 +...+ 995751^2 538042267367704000 = 813340^3 = 733892^2 +...+ 1261891^2 566038214864690329 = 827209^3 = 2312937^2 +...+ 2414242^2 656781041834164521 = 869241^3 = 772114^2 +...+ 1344540^2 958188654740652544 = 985864^3 = 838168^2 +...+ 1512983^2 1741057552217028375 = 1203015^3 = 2665648^2 +...+ 2891070^2 2453606982838035081 = 1348761^3 = 2465960^2 +...+ 2817081^2 7324939312836848704 = 1942084^3 = 772001^2 +...+ 2820383^2 31128405637777584128 = 3145712^3 = 12484417^2 +...+ 12681023^2 47930487637898407256 = 3632486^3 = 7350251^2 +...+ 8147761^2 57859343297173518625 = 3867745^3 = 37789066^2 +...+ 37829539^2 58047677333527653953 = 3871937^3 = 12618972^2 +...+ 12973453^2 95340837894501722977 = 4568353^3 = 2089689^2 +...+ 6658041^2 115237534945436189000 = 4866290^3 = 530792^2 +...+ 7019416^2 192722849299621656989 = 5776229^3 = 6484162^2 +...+ 9475619^2 357785493772998213000 = 7099170^3 = 7766186^2 +...+ 11552409^2 595861293215117277369 = 8414889^3 = 17896962^2 +...+ 19591724^2 1040700726329018473909 = 10133869^3 = 26869573^2 +...+ 28239958^2 2330938094537294907904 = 13258984^3 = 2662775^2 +...+ 19139958^2 5464432352858170025529 = 17613609^3 = 31917186^2 +...+ 36570028^2 6591770507847656234375 = 18749975^3 = 93374626^2 +...+ 94124624^2 (End)
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..45
Programs
-
PARI
find(lim)=my(t,v=List());for(k=2,(3*lim)^(1/3),t=k*(k-1)*(2*k-1)/6;for(n=k,(k-1)/2+sqrt(lim/k-(k^2-1)/12),if(ispower(t+=n^2-(n-k)^2,3),listput(v,t))));vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jun 11 2011
Extensions
Edited definition and a(11)-a(14) from Donovan Johnson, Oct 01 2010
a(15)-a(16) from Donovan Johnson, Jun 11 2011
a(17) from Donovan Johnson, Aug 02 2013