A136327 Numbers k > 1 such that binomial(2k-1, k-1) == 1 (mod k).
2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251
Offset: 1
Keywords
Examples
a(3) = 5 because binomial(9, 4) = 126 == 1 (mod 5).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- McIntosh, R. J. (1995), On the converse of Wolstenholme's theorem, Acta Arithm., LXXI.4 (1995), 381-389.
Crossrefs
Cf. A099905.
Programs
-
Maple
filter:= k -> binomial(2*k-1,k-1) mod k = 1: select(filter, [$1..1000]); # Robert Israel, Feb 11 2025
-
Mathematica
Select[Range[300], Mod[Binomial[2# - 1, # - 1], #] == 1 &] (* Alonso del Arte, May 11 2014 *)
-
PARI
isok(n) = (binomial(2*n-1, n-1) % n) == 1; \\ Michel Marcus, Aug 26 2013
Extensions
Name corrected by Robert Israel, Feb 11 2025
Comments