cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A354044 a(n) = 2*(-i)^n*(n*sin(c*(n+1)) - i*sin(-c*n))/sqrt(5) where c = arccos(i/2).

Original entry on oeis.org

0, 2, 5, 11, 23, 45, 86, 160, 293, 529, 945, 1673, 2940, 5134, 8917, 15415, 26539, 45525, 77842, 132716, 225685, 382877, 648165, 1095121, 1846968, 3109850, 5228261, 8777315, 14716223, 24643389, 41220110, 68873848, 114964805, 191719849, 319436697, 531789785
Offset: 0

Views

Author

Peter Luschny, May 16 2022

Keywords

Crossrefs

Cf. A000045 (the Fibonacci numbers), A007502, A088209, A094588, A136391, A178521, A264147, A353595.

Programs

  • Julia
    function fibrec(n::Int)
        n == 0 && return (BigInt(0), BigInt(1))
        a, b = fibrec(div(n, 2))
        c = a * (b * 2 - a)
        d = a * a + b * b
        iseven(n) ? (c, d) : (d, c + d)
    end
    function A354044(n)
        n == 0 && return BigInt(0)
        a, b = fibrec(n + 1)
        a*(n - 1) + b
    end
    println([A354044(n) for n in 0:35])
    
  • Maple
    c := arccos(I/2): a := n -> 2*(-I)^n*(n*sin(c*(n+1)) - I*sin(-c*n))/sqrt(5):
    seq(simplify(a(n)), n = 0..35);
  • PARI
    a(n) = fibonacci(n) + n*fibonacci(n+1) \\ Jianing Song, May 16 2022

Formula

a(n) = [x^n] ((2 - x)*x*(x + 1))/(x^2 + x - 1)^2.
a(n) = (((-1 - sqrt(5))^(-n)*(sqrt(5)*n - n - 2) + (-1 + sqrt(5))^(-n)*(sqrt(5)*n + n + 2)))/(2^(1 - n)*sqrt(5)).
a(n) = (-1)^(n - 1)*(Fibonacci(-n) - n*Fibonacci(-n - 1)).
a(n) = (-1)^(n - 1)*A353595(-n, -n). (A353595 is defined for all n in Z.)
a(n) = ((-42*n^2 + 259*n - 350)*a(n - 3) + (123*n^2 - 76*n - 446)*a(n - 2) + (207*n^2 - 885*n + 412)*a(n - 1)) / ((165*n - 542)*(n - 1)) for n >= 4.
a(n) = Fibonacci(n) + n*Fibonacci(n+1). - Jianing Song, May 16 2022

A246715 n * Lucas(n) - (n - 1) * Lucas(n - 1).

Original entry on oeis.org

1, 5, 6, 16, 27, 53, 95, 173, 308, 546, 959, 1675, 2909, 5029, 8658, 14852, 25395, 43297, 73627, 124909, 211456, 357270, 602551, 1014551, 1705657, 2863493, 4800990, 8039608, 13447563, 22469261, 37505879, 62546285, 104212364, 173489994, 288593903, 479706787, 796815125, 1322659237, 2194126122, 3637574444, 6027141411, 9980945785
Offset: 1

Views

Author

Giuseppe Coppoletta, Sep 02 2014

Keywords

Comments

By definition, the arithmetic mean of a(1), ... a(n) is equal to L(n) and a(n) - Lucas(n) = (n - 1) * Lucas(n - 2). See A136391 for the Fibonacci case.

Examples

			a(6) = 53 = 6*Lucas(6) - 5*Lucas(5) = 6 * 18 - 5 * 11 = 108 - 55.
a(4) = 16 = 4*Lucas(2) + Lucas(3) = 3*Lucas(2) + Lucas(4).
		

Crossrefs

Programs

  • Maple
    with(combinat): seq(n*(fibonacci(n-1)+fibonacci(n-3)) +fibonacci(n)+fibonacci(n-2),n=1..40).
  • Mathematica
    Table[LucasL[n]n - LucasL[n - 1](n - 1), {n, 35}] (* Alonso del Arte, Sep 02 2014 *)
  • PARI
    a(n) = n*(fibonacci(n-1)+fibonacci(n-3)) +fibonacci(n)+fibonacci(n-2); \\ Michel Marcus, Sep 02 2014

Formula

Recurrence: a(n + 1) = a(n) + a(n - 1) + 5*F(n - 2), n >= 2, where F = A000045. Proof: similar to A136391.
Also, a(n) = 2*a(n - 1) + a(n - 2) - 2*a(n - 3) - a(n - 4).
G.f.: x*(1 - x)*(1 + 4*x - x^2)/(1 - x - x^2)^2.
Showing 1-2 of 2 results.