cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A137310 Numbers n such that a type-4 Gaussian normal basis over GF(2^n) exists.

Original entry on oeis.org

1, 3, 7, 9, 13, 15, 25, 37, 43, 45, 49, 67, 73, 79, 87, 93, 97, 105, 115, 127, 135, 139, 153, 163, 165, 169, 175, 177, 189, 193, 199, 205, 207, 213, 219, 235, 265, 277, 279, 303, 307, 309, 319, 325, 343, 345, 363, 373, 387, 405, 409, 417, 423, 433, 435, 465, 469
Offset: 1

Views

Author

Joerg Arndt, Apr 05 2008

Keywords

Comments

A type-t Gaussian normal basis exists for GF(2^n) if p=n*t+1 is prime and gcd(n,(p-1)/ord(2 mod p))==1.

Crossrefs

Cf. A136415.

A101284 Numbers n such that a type-8 Gaussian normal basis exists for GF(2^n) over GF(2).

Original entry on oeis.org

5, 9, 11, 17, 29, 35, 39, 51, 65, 71, 77, 95, 101, 107, 117, 129, 131, 137, 141, 149, 161, 179, 185, 201, 215, 239, 249, 267, 269, 287, 297, 299, 305, 309, 315, 327, 329, 339, 341, 347, 371, 375, 381, 401, 407, 429, 431, 441, 449, 459, 471, 479
Offset: 1

Views

Author

Joerg Arndt, Apr 09 2008

Keywords

Comments

A type-t Gaussian normal basis exists for GF(2^n) if p=n*t+1 is prime and gcd(n,(p-1)/ord(2 mod p))==1.

Crossrefs

Cf. A136415.

Programs

  • PARI
    isok(n) = (isprime(p=8*n+1) && gcd(n, (p-1)/znorder(Mod(2, p))) == 1); \\ Michel Marcus, Aug 18 2013

A137311 Numbers n such that a type-5 Gaussian normal basis over GF(2^n) exists.

Original entry on oeis.org

2, 12, 20, 26, 36, 42, 84, 92, 98, 108, 114, 132, 140, 164, 188, 194, 212, 218, 234, 236, 258, 260, 276, 290, 306, 314, 324, 348, 362, 372, 380, 386, 402, 426, 428, 444, 474, 476, 482, 506, 524, 548, 570, 572, 602, 644, 674, 692, 698, 714, 716, 738, 740, 764
Offset: 1

Views

Author

Joerg Arndt, Apr 05 2008

Keywords

Comments

A type-t Gaussian normal basis exists for GF(2^n) if p=n*t+1 is prime and gcd(n, (p-1)/ord(2 mod p))==1.

Crossrefs

Cf. A136415.

A137313 Numbers n such that a type-6 Gaussian normal basis over GF(2^n) exists.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 17, 23, 26, 27, 30, 33, 35, 37, 38, 45, 46, 47, 58, 61, 62, 63, 70, 73, 77, 81, 83, 87, 90, 91, 101, 102, 103, 107, 110, 115, 118, 121, 122, 125, 126, 131, 137, 138, 142, 143, 146, 147, 151, 161, 165, 166, 170, 173, 175, 177, 178
Offset: 1

Views

Author

Joerg Arndt, Apr 05 2008

Keywords

Comments

A type-t Gaussian normal basis exists for GF(2^n) if p=n*t+1 is prime and gcd(n, (p-1)/ord(2 mod p))==1.

Crossrefs

Cf. A136415.

A137314 Numbers n such that a type-7 Gaussian normal basis over GF(2^n) exists.

Original entry on oeis.org

4, 28, 30, 54, 60, 70, 78, 94, 100, 108, 118, 126, 166, 196, 214, 238, 244, 268, 286, 316, 324, 334, 348, 364, 406, 430, 438, 444, 478, 484, 508, 510, 516, 534, 550, 558, 574, 604, 606, 628, 660, 670, 684, 708, 748, 790, 796, 820, 838, 846, 886, 924, 948, 966
Offset: 1

Views

Author

Joerg Arndt, Apr 05 2008

Keywords

Comments

A type-t Gaussian normal basis exists for GF(2^n) if p=n*t+1 is prime and gcd(n, (p-1)/ord(2 mod p))==1.

Crossrefs

Cf. A136415.
Showing 1-5 of 5 results.