cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136428 First differences of A064770.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 7, 1, 0, 0, 1, 0, 0, 0, 0, 1, -3, 1, 0, 0, 1, 0, 0, 0, 0, 1, -3, 1, 0, 0, 1, 0, 0, 0, 0, 1, 7, 1, 0, 0, 1, 0, 0, 0, 0, 1, -3, 1, 0, 0, 1, 0, 0, 0, 0, 1, -3, 1, 0, 0, 1, 0, 0, 0, 0, 1, -3, 1, 0, 0, 1, 0, 0, 0, 0, 1, -3, 1, 0, 0, 1, 0, 0, 0, 0, 1, 7, 1, 0, 0, 1, 0, 0, 0, 0, 1, 67, 1, 0, 0, 1, 0, 0, 0, 0, 1, 7, 1, 0, 0, 1, 0, 0, 0, 0, 1, -3, 1, 0, 0, 1, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 30 2007

Keywords

Comments

a(10*n+k) = 0 for k = 1, 2, 4, 5, 6, 7;
a(10*n+k) = 1 for k = 0, 3, 8;
a(100*n+10*k+9) = -3 for k = 1, 2, 4, 5, 6, 7;
a(100*n+10*k+9) = 7 for k = 0, 3, 8;
a(1000*n+100*k+99) = -33 for k = 1, 2, 4, 5, 6, 7;
a(1000*n+100*k+99) = 67 for k = 0, 3, 8.

Programs

  • Python
    def A136428(n): return (f:=lambda m: int(''.join(map(lambda x:'0111222223'[int(x)], str(m)))))(n+1)-f(n) # Chai Wah Wu, Oct 19 2024

Formula

a(n) = (2*A010052(m mod 10) - 1)*rounded(((1+A010052(m mod 10))*10^k)/3) where n = m*10^k - 1 with m mod 10 > 0.