A136436 Concatenation of subsequences: for each i the sequence of integers such that (1) they can be grouped into terms having the sums 1,2,3,...,i; (2) they can be grouped into terms having the sums i,...,3,2,1; (3) they are as large as possible.
1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 3, 1, 2, 2, 1, 1, 2, 3, 4, 1, 4, 3, 2, 1, 1, 2, 3, 1, 3, 3, 2, 3, 3, 1, 3, 2, 1, 1, 2, 3, 2, 2, 5, 6, 5, 2, 2, 3, 2, 1, 1, 2, 3, 3, 1, 5, 2, 4, 3, 4, 2, 5, 1, 3, 3, 2, 1, 1, 2, 3, 4, 5, 4, 2, 6, 1, 6, 2, 4, 5, 4, 3, 2, 1, 1, 2, 3, 4, 1, 4, 6, 7, 2, 6, 2, 7
Offset: 1
Examples
------------------------------------ ....|1|2|.3.|..4..| i=4: 1 2 1 2 1 2 1 is a subsequence ....|..4..|.3.|2|1| ------------------------------------ ....|1|2|3|4|.5.|..6..| i=6: 1 2 3 4 1 4 3 2 1 is a subsequence ....|..6..|.5.|4|3|2|1| ------------------------------------
Links
- Jonas Wallgren, Apr 02 2008, Table of n, a(n) for n = 1..212
- Nicholas John Bizzell-Browning, LIE scales: Composing with scales of linear intervallic expansion, Ph. D. Thesis, Brunel Univ. (UK, 2024). See pp. 65, 149, 155.