A136451 Triangle T(n,k) with the coefficient [x^k] of the characteristic polynomial of the following n X n matrix: 2 on the main antidiagonal, -1 on the adjacent sub-antidiagonals and 0 otherwise.
1, 2, -1, -3, 2, 1, -4, 6, 2, -1, 5, -10, -9, 2, 1, 6, -19, -16, 12, 2, -1, -7, 28, 42, -22, -15, 2, 1, -8, 44, 68, -74, -28, 18, 2, -1, 9, -60, -138, 126, 115, -34, -21, 2, 1, 10, -85, -208, 316, 202, -165, -40, 24, 2, -1, -11, 110, 363, -506, -605, 296, 224, -46, -27, 2, 1
Offset: 0
Examples
1; 2, -1; -3,2, 1; -4, 6, 2, -1; 5, -10, -9, 2, 1; 6, -19, -16, 12, 2, -1; -7,28, 42, -22, -15, 2, 1; -8, 44, 68, -74, -28,18, 2, -1; 9, -60, -138, 126, 115, -34, -21, 2, 1; 10, -85, -208,316, 202, -165, -40, 24, 2, -1; -11, 110, 363, -506, -605, 296, 224, -46, -27, 2, 1;
Programs
-
Maple
A136451x := proc(n,x) local A,r,c ; A := Matrix(1..n,1..n) ; for r from 1 to n do for c from 1 to n do A[r,c] :=0 ; if r+c = 1+n then A[r,c] := A[r,c]+2 ; elif abs(r+c-1-n)= 1 then A[r,c] := A[r,c]-1 ; end if; end do: end do: (-1)^n*LinearAlgebra[CharacteristicPolynomial](A,x) ; end proc; A136451 := proc(n,k) coeftayl( A136451x(n,x),x=0,k) ; end proc: seq(seq(A136451(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Dec 04 2011
-
Mathematica
H[n_] := Table[Table[If[i + j - 1 == n, 2,If[i + j - 1 == n + 1, -1, If[i + j - 1 == n - 1, -1, 0]]], {i, 1, n}], {j, 1, n}]; a = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[H[n], x], x], {n, 1, 10}]]; Flatten[a']
Comments