cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136462 Square table, read by antidiagonals, where T(n,k) = C((n+1)*2^(k-1), k) for n>=0, k>=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 6, 4, 1, 4, 15, 56, 70, 1, 5, 28, 220, 1820, 4368, 1, 6, 45, 560, 10626, 201376, 906192, 1, 7, 66, 1140, 35960, 1712304, 74974368, 621216192, 1, 8, 91, 2024, 91390, 7624512, 927048304, 94525795200, 1429702652400, 1, 9, 120, 3276, 194580, 24040016, 5423611200, 1708566412608, 409663695276000, 11288510714272000, 1, 10, 153, 4960, 367290, 61124064, 21193254160, 13161885792000, 10895665708319184, 6208116950265950720, 312268282598377321216
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2007

Keywords

Comments

Row n equals column 0 of matrix product A136467^(n+1) for n>=0.

Examples

			1,1,1,4,70,4368,906192,621216192,1429702652400,11288510714272000,...;
1,2,6,56,1820,201376,74974368,94525795200,409663695276000,...;
1,3,15,220,10626,1712304,927048304,1708566412608,...;
1,4,28,560,35960,7624512,5423611200,13161885792000,...;
1,5,45,1140,91390,24040016,21193254160,63815149590720,...;
1,6,66,2024,194580,61124064,64300886496,231207760388736,...;
1,7,91,3276,367290,134153712,163995687856,685581099291712,...;
1,8,120,4960,635376,264566400,368532802176,1756185841659392,...; ...
Triangle A136467 begins:
1;
1,1;
1,4,1;
4,32,16,1;
70,848,576,64,1;
4368,75648,62208,9216,256,1;
906192,22313216,21169152,3792896,143360,1024,1;
621216192,21827627008,23212261376,4793434112,223215616,2228224,4096,1;
such that row n of A136462 equals column 0 of A136467^(n+1).
		

Crossrefs

Cf. rows: A136465, A014070, A136466, A101346; A136463 (diagonal); A136467.

Programs

  • PARI
    {T(n,k)=binomial((n+1)*2^(k-1),k)}
    for(n=0,10,for(k=0,10,print1(T(n,k),", "));print(""))
    
  • PARI
    /* T(n,k) = Coefficient of x^k in series: */
    {T(n,k)=polcoeff(sum(i=0,k,((n+1)/2)^i*log(1+2^i*x +x*O(x^k))^i/i!),k)}
    for(n=0,10,for(k=0,10,print1(T(n,k),", "));print(""))

Formula

O.g.f. of row n: Sum_{k>=0} ((n+1)/2)^k * log(1 + 2^k*x)^k / k! = Sum_{k>=0} C((n+1)*2^(k-1), k) * x^k for n>=0.

Extensions

More terms and b-file added by Paul D. Hanna, Jul 02 2016