A136470 Triangle T, read by rows, where column 0 of T^m = {C(m*2^n, n), n>=0} for all m.
1, 2, 1, 6, 8, 1, 56, 128, 32, 1, 1820, 6048, 2176, 128, 1, 201376, 912128, 419328, 34816, 512, 1, 74974368, 449708544, 249300992, 26198016, 548864, 2048, 1, 94525795200, 739136655360, 477013868544, 59943682048, 1604059136, 8650752, 8192, 1, 409663695276000, 4132411271661568, 3028532448264192, 439222754869248, 14159357935616, 98723430400, 136839168, 32768, 1, 6208116950265950720, 80121787455478857728, 65415571433959456768, 10679727629898088448, 399723620798038016, 3391703461396480, 6141702569984, 2172649472, 131072, 1
Offset: 0
Examples
Triangle T begins: 1; 2, 1; 6, 8, 1; 56, 128, 32, 1; 1820, 6048, 2176, 128, 1; 201376, 912128, 419328, 34816, 512, 1; 74974368, 449708544, 249300992, 26198016, 548864, 2048, 1; 94525795200, 739136655360, 477013868544, 59943682048, 1604059136, 8650752, 8192, 1; 409663695276000, 4132411271661568, 3028532448264192, 439222754869248, 14159357935616, 98723430400, 136839168, 32768, 1; ... Column 0 of T^m is given by: [T^m](n,0) = C(m*2^n, n) for n>=0.
Programs
-
PARI
{T(n,k)=local(M=matrix(n+1,n+1,r,c,binomial(r*2^(c-2),c-1)),P); P=matrix(n+1,n+1,r,c,binomial((r+1)*2^(c-2),c-1));((P~*M~^-1)^2)[n+1,k+1]} for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
Formula
Equals the matrix square of triangle A136467.
Diagonals: T(n+1,n) = 2*4^n; T(n+2,n) = 2*8^n*(2^(n+2) + n-1).
Comments