A136477 Numbers x such that for some y < sqrt(2x), x^2 + x + y^2 is an odd primitive abundant number, A136476(n).
97, 112, 122, 135, 144, 179, 202, 207, 214, 217, 227, 354, 359, 477, 507, 569, 612, 632, 639, 732, 832, 2124, 2359, 2362, 2440, 2466, 2517, 2970, 3097, 3247, 3342, 3367, 3374, 3419, 3425, 3518, 3545, 3562, 3644, 3672, 3699, 3789, 3879, 3969, 3985, 4050
Offset: 1
Keywords
Examples
97^2 + 97 + 7^2 = 9555 = A136476(1) is an odd primitive abundant number, so a(1) = 97.
Programs
-
PARI
is(x,n=x^2+x+1,f)={forstep(y=1,sqrtint(2*x),2, sigma(n+=y*4-4,-1)>2 || next; for(i=1, #f=factor(n)[,1], sigma(n\f[i], -1)>2 && next(2)); return(1))} \\ M. F. Hasler, Feb 22 2017
Extensions
Edited by M. F. Hasler, Feb 22 2017
Comments