A136478 Smallest y such that for x = A136477(n), x^2 + x + y^2 is an odd primitive abundant number, A136476(n).
7, 7, 3, 15, 15, 15, 7, 3, 5, 7, 3, 15, 15, 27, 3, 15, 3, 27, 15, 27, 13, 3, 49, 17, 55, 27, 27, 15, 53, 77, 63, 77, 15, 45, 15, 69, 45, 77, 15, 57, 75, 27, 75, 63, 55, 75, 49, 85, 7, 3
Offset: 1
Keywords
Examples
97^2+97+7^2 = 9555 = A136476(1) is an odd primitive abundant number, therefore a(1) = 7.
Programs
-
PARI
{for(x=1, 5000, my(n=x^2+x+1, f); forstep(y=1, sqrtint(2*x), 2, sigma(n+=y*4-4, -1)>2 || next; for(i=1, #f=factor(n)[, 1], sigma(n\f[i], -1)>2 && next(2)); print1(y","); break))} \\ M. F. Hasler, Feb 22 2017
Formula
Extensions
Edited by M. F. Hasler, Feb 22 2017
Comments