cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136527 Triangle read by rows: T(n,k) = greatest common divisor of n-th and k-th composite number, 1<=k<=n.

Original entry on oeis.org

4, 2, 6, 4, 2, 8, 1, 3, 1, 9, 2, 2, 2, 1, 10, 4, 6, 4, 3, 2, 12, 2, 2, 2, 1, 2, 2, 14, 1, 3, 1, 3, 5, 3, 1, 15, 4, 2, 8, 1, 2, 4, 2, 1, 16, 2, 6, 2, 9, 2, 6, 2, 3, 2, 18, 4, 2, 4, 1, 10, 4, 2, 5, 4, 2, 20, 1, 3, 1, 3, 1, 3, 7, 3, 1, 3, 1, 21, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 22, 4, 6, 8, 3, 2, 12, 2, 3, 8, 6, 4, 3, 2, 24
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 03 2008

Keywords

Examples

			4;
2, 6;
4, 2, 8;
1, 3, 1, 9;
2, 2, 2, 1, 10;
...
		

Crossrefs

Programs

  • Mathematica
    nmax = 14;
    A002808 = Select[Range[FindRoot[n == nmax + PrimePi[n] + 1, {n, nmax, 2nmax}][[1, 2]] // Ceiling], CompositeQ];
    T[n_, k_] := GCD[A002808[[n]], A002808[[k]]];
    Table[T[n, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 15 2021 *)

Formula

T(n,k) = A050873(A002808(n),A002808(k));
A073783(n) = T(n-1,n) for n>1;
A002808(n) = T(n,n).