A136566 a(n) = sum of the exponents occurring only once each in the prime-factorization of n.
0, 1, 1, 2, 1, 0, 1, 3, 2, 0, 1, 3, 1, 0, 0, 4, 1, 3, 1, 3, 0, 0, 1, 4, 2, 0, 3, 3, 1, 0, 1, 5, 0, 0, 0, 0, 1, 0, 0, 4, 1, 0, 1, 3, 3, 0, 1, 5, 2, 3, 0, 3, 1, 4, 0, 4, 0, 0, 1, 2, 1, 0, 3, 6, 0, 0, 1, 3, 0, 0, 1, 5, 1, 0, 3, 3, 0, 0, 1, 5, 4, 0, 1, 2, 0, 0, 0, 4, 1, 2, 0, 3, 0, 0, 0, 6, 1, 3, 3, 0, 1, 0, 1, 4, 0
Offset: 1
Keywords
Examples
4200 = 2^3 * 3^1 * 5^2 * 7^1. The exponents of the prime factorization are therefore 3,1,2,1. The exponents occurring exactly once are 2 and 3. So a(4200) = 2+3 = 5.
Links
- Diana Mecum and Michael De Vlieger, Table of n, a(n) for n = 1..10000 (first 1000 terms from Diana Mecum)
Programs
-
Mathematica
Table[Total@ Flatten@ Select[Split[Sort[FactorInteger[n][[All, -1]]]], Length@ # == 1 &] - Boole[n == 1], {n, 105}] (* Michael De Vlieger, Sep 21 2017 *)
-
PARI
a(n) = my(f=factor(n)[,2]); sum(k=1, #f, f[k]*(#select(x->(x==f[k]), f) == 1)); \\ Michel Marcus, Sep 22 2017
Extensions
More terms from Diana L. Mecum, Jul 17 2008