A136617 a(n) = largest k such that the sum of k consecutive reciprocals 1/n + ... + 1/(n+k-1) does not exceed 1.
1, 2, 4, 6, 7, 9, 11, 12, 14, 16, 18, 19, 21, 23, 24, 26, 28, 30, 31, 33, 35, 36, 38, 40, 42, 43, 45, 47, 48, 50, 52, 54, 55, 57, 59, 61, 62, 64, 66, 67, 69, 71, 73, 74, 76, 78, 79, 81, 83, 85, 86, 88, 90, 91, 93, 95, 97, 98, 100, 102, 103, 105, 107, 109, 110, 112, 114, 115
Offset: 1
Examples
a(3) = 4 because 1/3+1/4+1/5+1/6 < 1 has 4 summands; adding 1/7 exceeds 1.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
- E. R. Bobo, A sequence related to the harmonic series, College Math. J. 26 (1995), 308-310.
Programs
-
Maple
A136617 := proc(n) local t, m; t:= 0; for m from n do t:= t+1/m; if t > 1 then return m-n; fi; od; end proc;[seq(A136617(n),n=1..100)]; # Robert Israel, Jan 2008
-
Mathematica
Table[Module[{start = Floor[z (E - 1)] - 1}, NestWhile[# + 1 &, start, HarmonicNumber[# + z] - HarmonicNumber[z] + 1/z <= 1 &]], {z, 1, 100}] (* Peter J. C. Moses, Aug 20 2012 *)
Formula
a(n) = A136616(n-1) - n + 1 with David Cantrell's heuristics: a(n) = floor( (e - 1)*(n - 1/2) + (e - 1/e)/(24*(n - 1/2)) ).
Comments