A136624 Irregular triangle read by rows: classify each numeric partition by sum of its parts and by the size of the staircase Ferrers board required to contain it. The triangle gives the number of partitions in each class, cf. A136102 and A136103.
1, 1, 2, 1, 2, 3, 3, 1, 2, 2, 6, 7, 6, 4, 1, 2, 2, 4, 8, 12, 15, 17, 14, 10, 5, 1, 2, 2, 4, 6, 12, 15, 23, 30, 39, 42, 40, 35, 25, 15, 6, 1, 2, 2, 4, 6, 10, 16, 23, 29, 42, 56, 71, 88, 103, 112, 114, 102, 86, 65, 41, 21, 7, 1, 2, 2, 4, 6, 10, 14, 24, 31, 43
Offset: 0
Examples
Starting a new row each time we are required to use a larger Ferrer board the triangle begins: 1 ..1 .....2...1 .........2...3...3...1 .............2...2...6...7...6...4...1 .................2...2...4...8..12..15..17..14..10...5...1 .....................2...2...4...6..12..15..23..30..39..42..40..35..25..15..6..1
Links
- John Tyler Rascoe, Rows n = 0..16, flattened
Crossrefs
Programs
-
PARI
d(s,n) = {my(v = setminus([1..n],s), r=[], c=1); for(i=2, #v, if(v[i]==v[i-1]+1, c++ , r=concat(r, c); c=1)) ; return(concat(r, c))} tri(n) = {n*(n+1)/2} S(n) = {my(R = x^tri(n)); if(n<1, return(1), for(i=1,n-1, forsubset([n,i], s, my(u=d(vecextract([1..n],s),n)); R+=(x^(tri(n)-sum(j=1,#u, tri(u[j]))))*prod(j=1,#u, sum(z=0,u[j]-1, S(z))))); return(R))} A136624(row_n) = {Vecrev(S(row_n)/x^(row_n))} \\ John Tyler Rascoe, Feb 25 2025
Extensions
a(26) onwards from John Tyler Rascoe, Feb 25 2025
Comments