A136657 Unsigned member s=2 of a family of generalizations of the (signed) Lah triangle A008297. All numbers divided by 2.
1, 3, 2, 12, 18, 4, 60, 150, 72, 8, 360, 1320, 1020, 240, 16, 2520, 12600, 13860, 5160, 720, 32, 20160, 131040, 191520, 99960, 21840, 2016, 64, 181440, 1481760, 2751840, 1882440, 571200, 81984, 5376, 128, 1814400, 18144000, 41489280, 35622720
Offset: 0
Examples
[1];[3,2];[12,18,4];[60,150,72,8];[360,1320,1020,240,16];...
References
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, ch. 8.4 p. 301 ff, with s -> -s. Table 8.3 for s=-2 and multiplied by(-1)^n, divided by 2.
Links
- W. Lang, First ten rows and more.
Programs
-
Mathematica
fallfac[n_, k_] := Pochhammer[n - k + 1, k]; a[n_, k_] := Sum[(-1)^(k - r)*Binomial[k, r]*fallfac[-2*r, n], {r, 0, k}]/(2*k!); Table[(-1)^n*a[n, k], {n, 0, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 09 2013 *)
Formula
a(n,k)=sum(((-1)^(k-r))*binomial(k,r)*fallfac(-2*r,n),r=0..k)/(2*k!), n>=k>=1. From the Charalambides reference Theorem 8.15, p. 306 for s=-2, divided by 2.
Comments