A136658
Row sums of unsigned triangle A136656 and also of triangle 2*A136657.
Original entry on oeis.org
1, 2, 10, 68, 580, 5912, 69784, 933200, 13912336, 228390560, 4088594464, 79186453568, 1648396356160, 36678170613632, 868239454798720, 21776352497954048, 576629116655862016, 16069766602389885440, 470015788927133039104, 14392014594072635786240
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
binomial(n-1, j-1)*(j+1)!*a(n-j), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Aug 01 2017
-
a[n_] := Sum[ StirlingS1[n, k] * BellB[k] * (-1)^(n-k) * 2^k, {k, 0, n}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 09 2013, after Paul D. Hanna *)
Table[Sum[BellY[n, k, (Range[n] + 1)!], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
-
{Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
{Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1), n)}
{a(n)=sum(k=0, n, Stirling1(n, k)*Bell(k) * (-1)^(n-k)*2^k)}
/* Paul D. Hanna, Dec 25 2011 */
A136656
Coefficients for rewriting generalized falling factorials into ordinary falling factorials.
Original entry on oeis.org
1, 0, -2, 0, 6, 4, 0, -24, -36, -8, 0, 120, 300, 144, 16, 0, -720, -2640, -2040, -480, -32, 0, 5040, 25200, 27720, 10320, 1440, 64, 0, -40320, -262080, -383040, -199920, -43680, -4032, -128, 0, 362880, 2963520, 5503680, 3764880, 1142400, 163968, 10752, 256, 0, -3628800, -36288000, -82978560
Offset: 0
Triangle starts:
[1]
[0, -2]
[0, 6, 4]
[0, -24, -36, -8]
[0, 120, 300, 144, 16]
...
Recurrence: a(4,2) = -7*a(3,2)-2*a(3,1) = -7*(-36) -2*(-24) = 300.
a(4,2)=300 as sum over the M3 numbers A036040 for the 2 parts partitions of 4: 4*fallfac(-2,1)^1*fallfac(-2,3)^1 + 3*fallfac(-2,2)^2 = 4*(-2)*(-24)+3*6^2 = 300.
Row n=3: [0,-24,-36,-8] for the coefficients in rewriting fallfac(-2*t,3)=((-1)^3)*risefac(2*t,3) = ((-1)^3)*(2*t)*(2*t+1)*(2*t+2) = 0*1 -24*t -36*t*(t-1) -8*t*(t-1)*(t-2).
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, ch. 8.4 p. 301 ff. Table 8.3 (with row n=0 and column k=0 and s=-2).
Cf.
A136657 without row n=0 and column k=0, divided by 2.
-
# The function BellMatrix is defined in A264428.
BellMatrix(n -> (-1)^(n+1)*(n+2)!, 9); # Peter Luschny, Jan 27 2016
-
fallfac[n_, k_] := Pochhammer[n - k + 1, k]; a[n_, k_] := Sum[(-1)^(k - r)*Binomial[k, r]*fallfac[-2*r, n], {r, 0, k}]/k!; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 09 2013 *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 10;
M = BellMatrix[(-1)^(# + 1)*(# + 2)!&, rows];
Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (*Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
@CachedFunction
def T(n, k): # unsigned case
if k == 0: return 1 if n == 0 else 0
return sum(T(n-j-1,k-1)*(j+1)*(j+2)*gamma(n)/gamma(n-j) for j in (0..n-k))
for n in range(7): [T(n,k) for k in (0..n)] # Peter Luschny, Mar 31 2015
A136659
Unsigned third column (k=2) of triangle A136656 divided by 4.
Original entry on oeis.org
1, 9, 75, 660, 6300, 65520, 740880, 9072000, 119750400, 1696464000, 25686460800, 414096883200, 7083236160000, 128152088064000, 2445351068160000, 49084865077248000, 1033983353475072000, 22808456326656000000, 525810946517176320000, 12645008187498086400000
Offset: 0
- Charalambos A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, Table 8.3, p. 311, with s=-2, k=2 column/4.
A136660
Unsigned fourth column (k=3) of triangle A136656 divided by 8.
Original entry on oeis.org
1, 18, 255, 3465, 47880, 687960, 10372320, 164656800, 2754259200, 48518870400, 899026128000, 17495593315200, 356995102464000, 7625049239808000, 170196434343936000, 3963602854987776000, 96160451873181696000
Offset: 0
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, Table 8.3, p. 311, with s=-2, k=3 column/8.
A136661
Unsigned fifth column (k=4) of triangle A136656 divided by 16.
Original entry on oeis.org
1, 30, 645, 12495, 235305, 4452840, 86070600, 1713927600, 35318883600, 754896542400, 16751853518400, 386036370720000, 9235831629024000, 229285008336384000, 5902321642753536000, 157423965566579712000
Offset: 0
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, Table 8.3, p. 311, with s=-2, k=4 column/16.
Showing 1-5 of 5 results.
Comments