cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A049376 Row sums of triangle A046089.

Original entry on oeis.org

1, 1, 4, 22, 154, 1306, 12976, 147484, 1883932, 26680924, 414468496, 7001104936, 127677078904, 2498712779512, 52209534323584, 1159559538626896, 27269218041047056, 676732851527182864, 17669429275516846912, 484087943980439097184, 13882791112964223876256
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of n-permutations where each cycle has two (not necessarily distinct) roots. Here a root means a designated element in a cycle. Cf. A000262 which gives the number of n-permutations with a single root in each cycle. Note that the order of designating the elements is not important. Cf. (A bijection from endofunctions to "doubly" rooted trees where the order of designating the roots is important) Miklos Bona, A Walk Through Combinatorics, World Scientific Publishing, 2006, page 216. - Geoffrey Critzer, May 17 2012.

Examples

			a(2) = 4 because we have: (1'')(2'');(1''2);(12'');(1'2') where the permutations are given in cycle notation and the two roots in each cycle are designated by a '.
		

Crossrefs

Column k=3 of A291709.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, j-1)*(j+1)!/2*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 01 2017
    a := proc(n) option remember; `if`(n < 3, [1, 1, 4][n + 1],
    a(n-1)*(3*n-2) - a(n-2)*3*(n-1)*(n-2) + a(n-3)*(n-1)*(n-2)*(n-3)) end:
    seq(a(n), n=0..20); # after Emanuele Munarini, Peter Luschny, Sep 09 2017
  • Mathematica
    nn = 15;Drop[Range[0, nn]! CoefficientList[Series[Exp[x/(1 - x) + x^2/2/(1 - x)^2], {x, 0, nn}], x], 1]  (* Geoffrey Critzer, May 17 2012 *)

Formula

E.g.f.: exp(p(x)) with p(x) := x*(2-x)/(2*(1-x)^2) (E.g.f. first column of A046089).
Lah transform of A000085: a(n) = Sum_{k=0..n} n!/k!*binomial(n-1,k-1) * A000085(k). - Vladeta Jovovic, Oct 02 2003
a(n+3) - (3*n+7)*a(n+2) + 3*(n+1)*(n+2)*a(n+1) - n*(n+1)*(n+2)* a(n) = 0. - Emanuele Munarini, Sep 08 2017
a(n) ~ n^(n-1/6) / sqrt(3) * exp(-1/3 + n^(1/3)/2 + 3*n^(2/3)/2 - n). - Vaclav Kotesovec, Oct 23 2017
E.g.f.: Sum_{n>=0} ( Integral 1/(1-x)^3 dx )^n / n!, where the constant of integration is taken to be zero. - Paul D. Hanna, Apr 27 2019
From Seiichi Manyama, Jan 18 2025: (Start)
a(n) = Sum_{k=0..n} |Stirling1(n,k)| * A004211(k).
a(n) = (1/exp(1/2)) * (-1)^n * n! * Sum_{k>=0} binomial(-2*k,n)/(2^k * k!). (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 01 2017

A294046 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(1/(1-x)^k - 1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 13, 0, 1, 4, 21, 68, 73, 0, 1, 5, 36, 195, 580, 501, 0, 1, 6, 55, 424, 2241, 5912, 4051, 0, 1, 7, 78, 785, 6136, 30483, 69784, 37633, 0, 1, 8, 105, 1308, 13705, 104544, 476469, 933200, 394353, 0, 1, 9, 136, 2023, 26748
Offset: 0

Views

Author

Seiichi Manyama, Oct 22 2017

Keywords

Examples

			Square array A(n,k) begins:
   1,   1,    1,     1,      1, ...
   0,   1,    2,     3,      4, ...
   0,   3,   10,    21,     36, ...
   0,  13,   68,   195,    424, ...
   0,  73,  580,  2241,   6136, ...
   0, 501, 5912, 30483, 104544, ...
		

Crossrefs

Columns k=0..5 give A000007, A000262, A136658, A202826, A294050, A294051.
Rows n=0..2 give A000012, A001477, A014105.
Main diagonal gives A294047.
Cf. A291709.

Programs

  • Mathematica
    A[0, ] = 1; A[n, k_] := k*(n-1)!*Sum[Binomial[j+k-1, k]*A[n-j, k]/(n-j)!, {j, 1, n}];
    Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2017 *)

Formula

A(0,k) = 1 and A(n,k) = k * (n-1)! * Sum_{j=1..n} binomial(j+k-1,k)*A(n-j,k)/(n-j)! for n > 0.

A346417 E.g.f.: exp(exp(2*(exp(x) - 1)) - 1).

Original entry on oeis.org

1, 2, 10, 66, 538, 5186, 57402, 714594, 9853978, 148774914, 2436823034, 42979319202, 811254807770, 16302732719682, 347248840767162, 7809649226242530, 184831773033020826, 4589793199157616770, 119272846472231229818, 3235960069037751550498, 91466308730323104617050
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 16 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t, m) option remember; `if`(n=0, `if`(t=1, 1,
          b(m, 1, 0)*2^m) , m*b(n-1, t, m)+b(n-1, t, m+1))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 06 2021
  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Exp[2 (Exp[x] - 1)] - 1], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS2[n, k] 2^k BellB[k], {k, 0, n}], {n, 0, 20}]
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] BellB[k, 2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(exp(exp(2*(exp(x) - 1)) - 1))) \\ Michel Marcus, Jul 19 2021

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k) * 2^k * Bell(k).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A001861(k) * a(n-k).

A202826 E.g.f.: exp( 1/(1-x)^3 - 1 ).

Original entry on oeis.org

1, 3, 21, 195, 2241, 30483, 476469, 8383203, 163532385, 3496040163, 81159271029, 2030708891907, 54427341596769, 1554460972941555, 47097454520401749, 1507969940021725347, 50850987639474121281, 1800630391669594010307, 66775808799868618561365
Offset: 0

Views

Author

Paul D. Hanna, Dec 25 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + 3*x + 21*x^2/2! + 195*x^3/3! + 2241*x^4/4! +...
where
log(A(x)) = 3*x + 6*x^2 + 10*x^3 + 15*x^4 + 21*x^5 + 28*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[E^(1/(1-x)^3-1), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Feb 12 2013 *)
    Table[Sum[Abs[StirlingS1[n, k]] 3^k BellB[k], {k, 0, n}], {n, 0, 100}] (* Emanuele Munarini, Sep 01 2017 *)
  • Maxima
    makelist(sum(abs(stirling1(n,k))*3^k*belln(k),k,0,n),n,0,12); /* Emanuele Munarini, Sep 01 2017 */
  • PARI
    {a(n)=n!*polcoeff(exp(1/(1-x +x*O(x^n))^3-1),n)}
    
  • PARI
    {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
    {Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1), n)}
    {a(n)=sum(k=0, n, Stirling1(n, k)*Bell(k) *(-1)^(n-k)*3^k)}
    

Formula

a(n) = Sum_{k=0..n} Stirling1(n, k) * Bell(k) * (-1)^(n-k) * 3^k.
a(n) ~ n! * 1/2*3^(1/8)*exp(sqrt(3*n)/2 -3/4 + (3*n)^(1/4)*(4/3*sqrt(n) + 5/24*sqrt(3)) )/(sqrt(2*Pi)*n^(5/8)) * (1 + 871/2560*(3/n)^(1/4)). - Vaclav Kotesovec, Feb 12 2013
a(n+4) - (4*n+15)*a(n+3) + 6*(n+2)*(n+3)*a(n+2) - 4*(n+1)*(n+2)+(n+3)*a(n+1) + n*(n+1)*(n+2)*(n+3)*a(n) = 0. - Emanuele Munarini, Sep 01 2017

Extensions

Example corrected by Vaclav Kotesovec, Feb 12 2013

A294189 E.g.f.: exp(2*(1/(1-x)^2 - 1)).

Original entry on oeis.org

1, 4, 28, 256, 2848, 37024, 547936, 9064192, 165339904, 3290839552, 70870959616, 1640130678784, 40555349598208, 1066271901822976, 29684252411219968, 871864036043259904, 26931181039027879936, 872418396180001718272, 29564373329109844885504
Offset: 0

Views

Author

Seiichi Manyama, Oct 24 2017

Keywords

Crossrefs

Column k=2 of A294188.
Cf. A136658.

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[E^(2*(1/(1-x)^2 - 1)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Aug 28 2025 *)
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(2*(1/(1-x)^2-1))))

Formula

From Vaclav Kotesovec, Aug 28 2025: (Start)
a(n) = (3*n+1)*a(n-1) - 3*(n-2)*(n-1)*a(n-2) + (n-3)*(n-2)*(n-1)*a(n-3).
a(n) ~ 2^(1/3) * 3^(-1/2) * exp(-4/3 + 2^(1/3)*n^(1/3) + 3*2^(-1/3)*n^(2/3) - n) * n^(n - 1/6) * (1 + 19/(27*2^(1/3)*n^(1/3)) - 11/(3645*2^(2/3)*n^(2/3))). (End)

A346432 a(0) = 1; a(n) = n! * Sum_{k=0..n-1} (n-k+1) * a(k) / k!.

Original entry on oeis.org

1, 2, 14, 144, 1968, 33600, 688320, 16450560, 449326080, 13806858240, 471395635200, 17703899136000, 725338710835200, 32193996432998400, 1538840509503897600, 78808952068374528000, 4305129487814098944000, 249876735246162984960000, 15356385691181506363392000
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 17 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = n! Sum[(n - k + 1) a[k]/k!, {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
    nmax = 18; CoefficientList[Series[1/(2 - 1/(1 - x)^2), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-1)^(n - k) StirlingS1[n, k] 2^k HurwitzLerchPhi[1/2, -k, 0]/2, {k, 0, n}], {n, 0, 18}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1 / (2 - 1 / (1 - x)^2))) \\ Michel Marcus, Jul 18 2021

Formula

E.g.f.: 1 / (2 - 1 / (1 - x)^2).
E.g.f.: 1 / (1 - Sum_{k>=1} (k+1) * x^k).
a(0) = 1, a(1) = 2, a(2) = 14; a(n) = 4 * n * a(n-1) - 2 * n * (n-1) * a(n-2).
a(n) = Sum_{k=0..n} (-1)^(n-k) * Stirling1(n,k) * 2^k * A000670(k).
a(n) = n! * A003480(n).

A355267 Triangle read by rows, T(n, k) = n! * [y^k] [x^n] exp(1/(1 - x)^(1 + y) - 1), for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 3, 5, 2, 13, 29, 21, 5, 73, 200, 202, 90, 15, 501, 1609, 2045, 1295, 410, 52, 4051, 14809, 22418, 18085, 8220, 1998, 203, 37633, 153453, 267400, 259175, 151165, 53095, 10402, 877, 394353, 1767240, 3463612, 3889620, 2740885, 1241632, 353178, 57676, 4140
Offset: 0

Views

Author

Peter Luschny, Jul 05 2022

Keywords

Examples

			Triangle T(n, k) begins:
[0]      1;
[1]      1,      1;
[2]      3,      5,      2;
[3]     13,     29,     21,      5;
[4]     73,    200,    202,     90,     15;
[5]    501,   1609,   2045,   1295,    410,    52;
[6]   4051,  14809,  22418,  18085,   8220,  1998,   203;
[7]  37633, 153453, 267400, 259175, 151165, 53095, 10402, 877;
		

Crossrefs

Cf. A136658 (row sums), A000007 (alternating row sums), A000262 (column 0), A216313 (column 1), A000110 (main diagonal).
Cf. A355260.

Programs

  • Maple
    egf := exp(1/(1 - x)^(1 + y) - 1):
    ser := series(egf, x, 12): cfx := n -> coeff(ser, x, n):
    seq(print(seq(n!*(coeff(cfx(n), y, k)), k = 0..n)), n = 0..8);
Showing 1-7 of 7 results.