A046089 Triangle read by rows, the Bell transform of (n+2)!/2 without column 0.
1, 3, 1, 12, 9, 1, 60, 75, 18, 1, 360, 660, 255, 30, 1, 2520, 6300, 3465, 645, 45, 1, 20160, 65520, 47880, 12495, 1365, 63, 1, 181440, 740880, 687960, 235305, 35700, 2562, 84, 1, 1814400, 9072000, 10372320, 4452840, 877905, 86940, 4410, 108, 1
Offset: 1
Examples
Triangle begins: [1], [3, 1], [12, 9, 1], [60, 75, 18, 1], [360, 660, 255, 30, 1], [2520, 6300, 3465, 645, 45, 1], ...
Links
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Wolfdieter Lang, First ten rows.
- E. Neuwirth, Recursively defined combinatorial Functions: Extending Galton's board, Discr. Maths. 239 (2001) 33-51.
- John Riordan, Letter, Apr 28 1976.
Programs
-
Mathematica
a[n_, m_] /; n >= m >= 1 := a[n, m] = (2m + n - 1)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n < m = 0; a[, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]] (* _Jean-François Alcover, Jul 22 2011 *) a[n_, k_] := -(-1/2)^k*(n+1)!*HypergeometricPFQ[{1-k, n/2+1, (n+3)/2}, {3/2, 2}, 1]/(k-1)!; Table[a[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 28 2013, after Vladimir Kruchinin *) a[0] = 0; a[n_] := (n + 1)!/2; T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, a[0]^n], Sum[Binomial[n - 1, j - 1] a[j] T[n - j, k - 1], {j, 0, n - k + 1}]]; Table[T[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 19 2016, after Peter Luschny, updated Jan 01 2021 *) rows = 9; a[n_, m_] := BellY[n, m, Table[(k+2)!/2, {k, 0, rows}]]; Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
-
Maxima
a(n,k):=(n!*sum((-1)^(k-j)*binomial(k,j)*binomial(n+2*j-1,2*j-1),j,1,k))/(2^k*k!); /* Vladimir Kruchinin, Apr 01 2011 */
-
Sage
# uses[bell_matrix from A264428] # Adds a column 1,0,0,0, ... at the left side of the triangle. bell_matrix(lambda n: factorial(n+2)//2, 9) # Peter Luschny, Jan 19 2016
Formula
a(n, m) = n!*A030523(n, m)/(m!*2^(n-m)); a(n, m) = (2*m+n-1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n
a(n, m) = sum(|S1(n, j)|* A075497(j, m), j=m..n) (matrix product), with S1(n, j) := A008275(n, j) (signed Stirling1 triangle). Priv. comm. to Wolfdieter Lang by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference.
a(n, k) = (n!*sum(j=1..k, (-1)^(k-j)*binomial(k,j)*binomial(n+2*j-1,2*j-1)))/(2^k*k!) - Vladimir Kruchinin, Apr 01 2011
Extensions
New name from Peter Luschny, Jan 19 2016
A291709 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Sum_{j>=1} (-1)^(j-1)*binomial(-k,j-1)*x^j/j).
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 13, 24, 1, 1, 1, 5, 22, 73, 120, 1, 1, 1, 6, 33, 154, 501, 720, 1, 1, 1, 7, 46, 273, 1306, 4051, 5040, 1, 1, 1, 8, 61, 436, 2721, 12976, 37633, 40320, 1, 1, 1, 9, 78, 649, 4956, 31701, 147484, 394353, 362880, 1
Offset: 0
Examples
Square array B(j,k) begins: 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, ... 0, 1, 3, 6, 10, ... 0, 1, 4, 10, 20, ... 0, 1, 5, 15, 35, ... 0, 1, 6, 21, 56, ... Square array A(n,k) begins: 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, ... 1, 6, 13, 22, 33, ... 1, 24, 73, 154, 273, ... 1, 120, 501, 1306, 2721, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Programs
-
Mathematica
B[j_, k_] := (-1)^(j-1)*Binomial[-k, j-1]; A[0, ] = 1; A[n, k_] := (n-1)!*Sum[B[j, k]*A[n-j, k]/(n-j)!, {j, 1, n}]; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2017 *)
Formula
Let B(j,k) = (-1)^(j-1)*binomial(-k,j-1) for j>0 and k>=0.
A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..n} B(j,k)*A(n-j,k)/(n-j)! for n > 0.
A157383 A partition product of Stirling_1 type [parameter k = -3] with biggest-part statistic (triangle read by rows).
1, 1, 3, 1, 9, 12, 1, 45, 48, 60, 1, 165, 480, 300, 360, 1, 855, 3840, 3600, 2160, 2520, 1, 3843, 29400, 46200, 30240, 17640, 20160, 1, 21819, 272832, 520800, 443520, 282240, 161280, 181440
Offset: 1
Comments
Links
- Peter Luschny, Counting with Partitions.
- Peter Luschny, Generalized Stirling_1 Triangles.
Crossrefs
Formula
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-2}(j-n-1).
A136658 Row sums of unsigned triangle A136656 and also of triangle 2*A136657.
1, 2, 10, 68, 580, 5912, 69784, 933200, 13912336, 228390560, 4088594464, 79186453568, 1648396356160, 36678170613632, 868239454798720, 21776352497954048, 576629116655862016, 16069766602389885440, 470015788927133039104, 14392014594072635786240
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..432
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add( binomial(n-1, j-1)*(j+1)!*a(n-j), j=1..n)) end: seq(a(n), n=0..25); # Alois P. Heinz, Aug 01 2017
-
Mathematica
a[n_] := Sum[ StirlingS1[n, k] * BellB[k] * (-1)^(n-k) * 2^k, {k, 0, n}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 09 2013, after Paul D. Hanna *) Table[Sum[BellY[n, k, (Range[n] + 1)!], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
-
PARI
{Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)} {Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1), n)} {a(n)=sum(k=0, n, Stirling1(n, k)*Bell(k) * (-1)^(n-k)*2^k)} /* Paul D. Hanna, Dec 25 2011 */
Formula
a(n) = Sum_{k=0..n} (-1)^n*A136656(n,k), n>=0.
E.g.f.: exp(x*(2-x)/(1-x)^2) (from Jabotinsky type triangle).
a(n) = Sum_{k=0..n} Stirling1(n, k) * Bell(k) * (-1)^(n-k) * 2^k. - Paul D. Hanna, Dec 25 2011
a(n) = (3*n-1)*a(n-1) - 3*(n-2)*(n-1)*a(n-2) + (n-3)*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Sep 25 2013
a(n) ~ 2^(1/6)*n^(n-1/6) * exp((n/2)^(1/3)+3*(n/2)^(2/3)-n-2/3) / sqrt(3) * (1 + 7/(27*(n/2)^(1/3)) - 422/(3645*(n/2)^(2/3))). - Vaclav Kotesovec, Sep 25 2013
Representation as special values of hypergeometric functions 2F2, in Maple notation: a(n) = (n+1)!*hypergeom([(1/2)*n+1, (1/2)*n+3/2], [3/2, 2], 1)*exp(-1), n = 1,2,... . - Karol A. Penson, Jul 28 2018
A144353 Partition number array, called M31(3), related to A046089(n,m)= |S1(3;n,m)| (generalized Stirling triangle).
1, 3, 1, 12, 9, 1, 60, 48, 27, 18, 1, 360, 300, 360, 120, 135, 30, 1, 2520, 2160, 2700, 1440, 900, 2160, 405, 240, 405, 45, 1, 20160, 17640, 22680, 25200, 7560, 18900, 10080, 11340, 2100, 7560, 2835, 420, 945, 63, 1, 181440, 161280, 211680, 241920, 126000, 70560, 181440
Offset: 1
Comments
Each partition of n, ordered as in Abramowitz-Stegun (A-St order; for the reference see A134278), is mapped to a nonnegative integer a(n,k) =: M31(3;n,k) with the k-th partition of n in A-St order.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42,...].
Third member (K=3) in the family M31(K) of partition number arrays.
If M31(3;n,k) is summed over those k with fixed number of parts m one obtains the unsigned triangle |S1(3)|:= A046089.
Examples
[1];[3,1];[12,9,1];[60,48,27,18,1];[360,300,360,120,135,30,1];... a(4,3)= 27 = 3*|S1(3;2,1)|^2. The relevant partition of 4 is (2^2).
Links
- W. Lang, First 10 rows of the array and more.
- W. Lang, Combinatorial Interpretation of Generalized Stirling Numbers, J. Int. Seqs. Vol. 12 (2009) 09.3.3.
Formula
a(n,k)=(n!/product(e(n,k,j)!*j!^(e(n,k,j),j=1..n))*product(|S1(3;j,1)|^e(n,k,j),j=1..n) = M3(n,k)*product(|S1(3;j,1)|^e(n,k,j),j=1..n) with |S1(3;n,1)|= A001710(n+1) = (n+1)!/2!, n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n. M3(n,k)=A036040.
A380257 Expansion of e.g.f. exp( (1/(1-3*x)^(2/3) - 1)/2 ).
1, 1, 6, 56, 706, 11186, 213156, 4742256, 120571676, 3447128796, 109427729096, 3818008773536, 145196289453656, 5976489668054296, 264685744187399536, 12548508890339297856, 634022724191046592016, 34007862777419093053456, 1929842567333195106456416
Offset: 0
Keywords
Links
- Eric Weisstein's World of Mathematics, Bell Polynomial.
Programs
-
Mathematica
CoefficientList[Series[Exp[ (1/(1-3*x)^(2/3) - 1)/2 ],{x,0,18}],x]Range[0,18]! (* Stefano Spezia, Mar 31 2025 *)
-
PARI
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp((1/(1-3*x)^(2/3)-1)/2)))
Formula
a(n) = Sum_{k=0..n} 3^(n-k) * |Stirling1(n,k)| * A004211(k) = Sum_{k=0..n} 2^k * 3^(n-k) * |Stirling1(n,k)| * Bell_k(1/2), where Bell_n(x) is n-th Bell polynomial.
a(n) = (1/exp(1/2)) * (-3)^n * n! * Sum_{k>=0} binomial(-2*k/3,n)/(2^k * k!).
A380258 Expansion of e.g.f. exp( (1/(1-5*x)^(2/5) - 1)/2 ).
1, 1, 8, 106, 1954, 46082, 1323064, 44750644, 1741897340, 76672512316, 3764746706176, 203976645319448, 12086590557877144, 777464693554778776, 53948773488864143072, 4016672567726156437744, 319379204127841984947472, 27010128651142535536409360, 2420802590890201251989984128
Offset: 0
Keywords
Links
- Eric Weisstein's World of Mathematics, Bell Polynomial.
Programs
-
Mathematica
CoefficientList[Series[Exp[ (1/(1-5*x)^(2/5) - 1)/2 ],{x,0,18}],x]Range[0,18]! (* Stefano Spezia, Mar 31 2025 *)
-
PARI
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp((1/(1-5*x)^(2/5)-1)/2)))
Formula
a(n) = Sum_{k=0..n} 5^(n-k) * |Stirling1(n,k)| * A004211(k) = Sum_{k=0..n} 2^k * 5^(n-k) * |Stirling1(n,k)| * Bell_k(1/2), where Bell_n(x) is n-th Bell polynomial.
a(n) = (1/exp(1/2)) * (-5)^n * n! * Sum_{k>=0} binomial(-2*k/5,n)/(2^k * k!).
Comments