cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A049376 Row sums of triangle A046089.

Original entry on oeis.org

1, 1, 4, 22, 154, 1306, 12976, 147484, 1883932, 26680924, 414468496, 7001104936, 127677078904, 2498712779512, 52209534323584, 1159559538626896, 27269218041047056, 676732851527182864, 17669429275516846912, 484087943980439097184, 13882791112964223876256
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of n-permutations where each cycle has two (not necessarily distinct) roots. Here a root means a designated element in a cycle. Cf. A000262 which gives the number of n-permutations with a single root in each cycle. Note that the order of designating the elements is not important. Cf. (A bijection from endofunctions to "doubly" rooted trees where the order of designating the roots is important) Miklos Bona, A Walk Through Combinatorics, World Scientific Publishing, 2006, page 216. - Geoffrey Critzer, May 17 2012.

Examples

			a(2) = 4 because we have: (1'')(2'');(1''2);(12'');(1'2') where the permutations are given in cycle notation and the two roots in each cycle are designated by a '.
		

Crossrefs

Column k=3 of A291709.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, j-1)*(j+1)!/2*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 01 2017
    a := proc(n) option remember; `if`(n < 3, [1, 1, 4][n + 1],
    a(n-1)*(3*n-2) - a(n-2)*3*(n-1)*(n-2) + a(n-3)*(n-1)*(n-2)*(n-3)) end:
    seq(a(n), n=0..20); # after Emanuele Munarini, Peter Luschny, Sep 09 2017
  • Mathematica
    nn = 15;Drop[Range[0, nn]! CoefficientList[Series[Exp[x/(1 - x) + x^2/2/(1 - x)^2], {x, 0, nn}], x], 1]  (* Geoffrey Critzer, May 17 2012 *)

Formula

E.g.f.: exp(p(x)) with p(x) := x*(2-x)/(2*(1-x)^2) (E.g.f. first column of A046089).
Lah transform of A000085: a(n) = Sum_{k=0..n} n!/k!*binomial(n-1,k-1) * A000085(k). - Vladeta Jovovic, Oct 02 2003
a(n+3) - (3*n+7)*a(n+2) + 3*(n+1)*(n+2)*a(n+1) - n*(n+1)*(n+2)* a(n) = 0. - Emanuele Munarini, Sep 08 2017
a(n) ~ n^(n-1/6) / sqrt(3) * exp(-1/3 + n^(1/3)/2 + 3*n^(2/3)/2 - n). - Vaclav Kotesovec, Oct 23 2017
E.g.f.: Sum_{n>=0} ( Integral 1/(1-x)^3 dx )^n / n!, where the constant of integration is taken to be zero. - Paul D. Hanna, Apr 27 2019
From Seiichi Manyama, Jan 18 2025: (Start)
a(n) = Sum_{k=0..n} |Stirling1(n,k)| * A004211(k).
a(n) = (1/exp(1/2)) * (-1)^n * n! * Sum_{k>=0} binomial(-2*k,n)/(2^k * k!). (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 01 2017

A144353 Partition number array, called M31(3), related to A046089(n,m)= |S1(3;n,m)| (generalized Stirling triangle).

Original entry on oeis.org

1, 3, 1, 12, 9, 1, 60, 48, 27, 18, 1, 360, 300, 360, 120, 135, 30, 1, 2520, 2160, 2700, 1440, 900, 2160, 405, 240, 405, 45, 1, 20160, 17640, 22680, 25200, 7560, 18900, 10080, 11340, 2100, 7560, 2835, 420, 945, 63, 1, 181440, 161280, 211680, 241920, 126000, 70560, 181440
Offset: 1

Views

Author

Wolfdieter Lang Oct 09 2008, Oct 28 2008

Keywords

Comments

Each partition of n, ordered as in Abramowitz-Stegun (A-St order; for the reference see A134278), is mapped to a nonnegative integer a(n,k) =: M31(3;n,k) with the k-th partition of n in A-St order.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42,...].
Third member (K=3) in the family M31(K) of partition number arrays.
If M31(3;n,k) is summed over those k with fixed number of parts m one obtains the unsigned triangle |S1(3)|:= A046089.

Examples

			[1];[3,1];[12,9,1];[60,48,27,18,1];[360,300,360,120,135,30,1];...
a(4,3)= 27 = 3*|S1(3;2,1)|^2. The relevant partition of 4 is (2^2).
		

Crossrefs

A049376 (row sums).
A130561 (M31(2) array), A144354 (M31(4) array).

Formula

a(n,k)=(n!/product(e(n,k,j)!*j!^(e(n,k,j),j=1..n))*product(|S1(3;j,1)|^e(n,k,j),j=1..n) = M3(n,k)*product(|S1(3;j,1)|^e(n,k,j),j=1..n) with |S1(3;n,1)|= A001710(n+1) = (n+1)!/2!, n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n. M3(n,k)=A036040.

A134138 Alternating row sums of triangle A046089 (S1p(3)).

Original entry on oeis.org

1, 2, 4, 2, -74, -916, -8672, -73564, -542852, -2595016, 18348496, 906083672, 21021502984, 406255974032, 7157641045696, 116383645516784, 1681549859135248, 18311613681506336, -3332917116147392
Offset: 1

Views

Author

Wolfdieter Lang Oct 12 2007

Keywords

Crossrefs

Cf. A049377 (row sums of A046089).

Programs

  • Mathematica
    Rest[CoefficientList[Series[1-E^(-x*(2-x)/(2*(1-x)^2)), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Oct 09 2013 *)

Formula

a(n) = Sum_{m=1..n} A046089(n,m)*(-1)^(m-1), n >= 1.
E.g.f.: 1 - exp(-x*(2-x)/(2*(1-x)^2)). Cf. e.g.f. first column of A046089.
a(n) = (3*n-4)*a(n-1) - 3*(n-2)*(n-1)*a(n-2) + (n-3)*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Oct 09 2013
Lim sup n->infinity |a(n)|/(2*n^(n-1/6)*exp(-n^(1/3)/4+3*n^(2/3)/4-n+1/3)/sqrt(3)) = 1. - Vaclav Kotesovec, Oct 09 2013

A001710 Order of alternating group A_n, or number of even permutations of n letters.

Original entry on oeis.org

1, 1, 1, 3, 12, 60, 360, 2520, 20160, 181440, 1814400, 19958400, 239500800, 3113510400, 43589145600, 653837184000, 10461394944000, 177843714048000, 3201186852864000, 60822550204416000, 1216451004088320000, 25545471085854720000, 562000363888803840000
Offset: 0

Views

Author

Keywords

Comments

For n >= 3, a(n-1) is also the number of ways that a 3-cycle in the symmetric group S_n can be written as a product of 2 long cycles (of length n). - Ahmed Fares (ahmedfares(AT)my-deja.com), Aug 14 2001
a(n) is the number of Hamiltonian circuit masks for an n X n adjacency matrix of an undirected graph. - Chad Brewbaker, Jan 31 2003
a(n-1) is the number of necklaces one can make with n distinct beads: n! bead permutations, divide by two to represent flipping the necklace over, divide by n to represent rotating the necklace. Related to Stirling numbers of the first kind, Stirling cycles. - Chad Brewbaker, Jan 31 2003
Number of increasing runs in all permutations of [n-1] (n>=2). Example: a(4)=12 because we have 12 increasing runs in all the permutations of [3] (shown in parentheses): (123), (13)(2), (3)(12), (2)(13), (23)(1), (3)(2)(1). - Emeric Deutsch, Aug 28 2004
Minimum permanent over all n X n (0,1)-matrices with exactly n/2 zeros. - Simone Severini, Oct 15 2004
The number of permutations of 1..n that have 2 following 1 for n >= 1 is 0, 1, 3, 12, 60, 360, 2520, 20160, ... . - Jon Perry, Sep 20 2008
Starting (1, 3, 12, 60, ...) = binomial transform of A000153: (1, 2, 7, 32, 181, ...). - Gary W. Adamson, Dec 25 2008
First column of A092582. - Mats Granvik, Feb 08 2009
The asymptotic expansion of the higher order exponential integral E(x,m=1,n=3) ~ exp(-x)/x*(1 - 3/x + 12/x^2 - 60/x^3 + 360/x^4 - 2520/x^5 + 20160/x^6 - 81440/x^7 + ...) leads to the sequence given above. See A163931 and A130534 for more information. - Johannes W. Meijer, Oct 20 2009
For n>1: a(n) = A173333(n,2). - Reinhard Zumkeller, Feb 19 2010
Starting (1, 3, 12, 60, ...) = eigensequence of triangle A002260, (a triangle with k terms of (1,2,3,...) in each row given k=1,2,3,...). Example: a(6) = 360, generated from (1, 2, 3, 4, 5) dot (1, 1, 3, 12, 60) = (1 + 2 + 9 + 48 + 300). - Gary W. Adamson, Aug 02 2010
For n>=2: a(n) is the number of connected 2-regular labeled graphs on (n+1) nodes (Cf. A001205). - Geoffrey Critzer, Feb 16 2011.
The Fi1 and Fi2 triangle sums of A094638 are given by the terms of this sequence (n>=1). For the definition of these triangle sums see A180662. - Johannes W. Meijer, Apr 20 2011
Also [1, 1] together with the row sums of triangle A162608. - Omar E. Pol, Mar 09 2012
a(n-1) is, for n>=2, also the number of necklaces with n beads (only C_n symmetry, no turnover) with n-1 distinct colors and signature c[.]^2 c[.]^(n-2). This means that two beads have the same color, and for n=2 the second factor is omitted. Say, cyclic(c[1]c[1]c[2]c[3]..c[n-1]), in short 1123...(n-1), taken cyclically. E.g., n=2: 11, n=3: 112, n=4: 1123, 1132, 1213, n=5: 11234, 11243, 11324, 11342, 11423, 11432, 12134, 12143, 13124, 13142, 14123, 14132. See the next-to-last entry in line n>=2 of the representative necklace partition array A212359. - Wolfdieter Lang, Jun 26 2012
For m >= 3, a(m-1) is the number of distinct Hamiltonian circuits in a complete simple graph with m vertices. See also A001286. - Stanislav Sykora, May 10 2014
In factorial base (A007623) these numbers have a simple pattern: 1, 1, 1, 11, 200, 2200, 30000, 330000, 4000000, 44000000, 500000000, 5500000000, 60000000000, 660000000000, 7000000000000, 77000000000000, 800000000000000, 8800000000000000, 90000000000000000, 990000000000000000, etc. See also the formula based on this observation, given below. - Antti Karttunen, Dec 19 2015
Also (by definition) the independence number of the n-transposition graph. - Eric W. Weisstein, May 21 2017
Number of permutations of n letters containing an even number of even cycles. - Michael Somos, Jul 11 2018
Equivalent to Brewbaker's and Sykora's comments, a(n - 1) is the number of undirected cycles covering n labeled vertices, hence the logarithmic transform of A002135. - Gus Wiseman, Oct 20 2018
For n >= 2 and a set of n distinct leaf labels, a(n) is the number of binary, rooted, leaf-labeled tree topologies that have a caterpillar shape (column k=1 of A306364). - Noah A Rosenberg, Feb 11 2019
Also the clique covering number of the n-Bruhat graph. - Eric W. Weisstein, Apr 19 2019
a(n) is the number of lattices of the form [s,w] in the weak order on S_n, for a fixed simple reflection s. - Bridget Tenner, Jan 16 2020
For n > 3, a(n) = p_1^e_1*...*p_m^e_m, where p_1 = 2 and e_m = 1. There exists p_1^x where x <= e_1 such that p_1^x*p_m^e_m is a primitive Zumkeller number (A180332) and p_1^e_1*p_m^e_m is a Zumkeller number (A083207). Therefore, for n > 3, a(n) = p_1^e_1*p_m^e_m*r, where r is relatively prime to p_1*p_m, is also a Zumkeller number. - Ivan N. Ianakiev, Mar 11 2020
For n>1, a(n) is the number of permutations of [n] that have 1 and 2 as cycle-mates, that is, 1 and 2 are contained in the same cycle of a cyclic representation of permutations of [n]. For example, a(4) counts the 12 permutations with 1 and 2 as cycle-mates, namely, (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2), (1 2 3) (4), (1 3 2) (4), (1 2 4 )(3), (1 4 2)(3), (1 2)(3 4), and (1 2)(3)(4). Since a(n+2)=row sums of A162608, our result readily follows. - Dennis P. Walsh, May 28 2020

Examples

			G.f. = 1 + x + x^2 + 3*x^3 + 12*x^4 + 60*x^5 + 360*x^6 + 2520*x^7 + ...
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 87-8, 20. (a), c_n^e(t=1).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n+1)= A046089(n, 1), n >= 1 (first column of triangle), A161739 (q(n) sequence).
Bisections are A002674 and A085990 (essentially).
Row 3 of A265609 (essentially).
Row sums of A307429.

Programs

  • Magma
    [1] cat [Order(AlternatingGroup(n)): n in [1..20]]; // Arkadiusz Wesolowski, May 17 2014
    
  • Maple
    seq(mul(k, k=3..n), n=0..20); # Zerinvary Lajos, Sep 14 2007
  • Mathematica
    a[n_]:= If[n > 2, n!/2, 1]; Array[a, 21, 0]
    a[n_]:= If[n<3, 1, n*a[n-1]]; Array[a, 21, 0]; (* Robert G. Wilson v, Apr 16 2011 *)
    a[ n_]:= If[n<0, 0, n! SeriesCoefficient[(2-x^2)/(2-2x), {x, 0, n}]]; (* Michael Somos, May 22 2014 *)
    a[ n_]:= If[n<0, 0, n! SeriesCoefficient[1 +Sinh[-Log[1-x]], {x, 0, n}]]; (* Michael Somos, May 22 2014 *)
    Numerator[Range[0, 20]!/2] (* Eric W. Weisstein, May 21 2017 *)
    Table[GroupOrder[AlternatingGroup[n]], {n, 0, 20}] (* Eric W. Weisstein, May 21 2017 *)
  • PARI
    {a(n) = if( n<2, n>=0, n!/2)};
    
  • PARI
    a(n)=polcoeff(1+x*sum(m=0,n,m^m*x^m/(1+m*x+x*O(x^n))^m),n) \\ Paul D. Hanna
    
  • PARI
    A001710=n->n!\2+(n<2) \\ M. F. Hasler, Dec 01 2013
    
  • Python
    from math import factorial
    def A001710(n): return factorial(n)>>1 if n > 1 else 1 # Chai Wah Wu, Feb 14 2023
    
  • SageMath
    def A001710(n): return (factorial(n) +int(n<2))//2
    [A001710(n) for n in range(31)] # G. C. Greubel, Sep 28 2024
  • Scheme
    ;; Using memoization-macro definec for which an implementation can be found in http://oeis.org/wiki/Memoization
    (definec (A001710 n) (cond ((<= n 2) 1) (else (* n (A001710 (- n 1))))))
    ;; Antti Karttunen, Dec 19 2015
    

Formula

a(n) = numerator(n!/2) and A141044(n) = denominator(n!/2).
D-finite with recurrence: a(0) = a(1) = a(2) = 1; a(n) = n*a(n-1) for n>2. - Chad Brewbaker, Jan 31 2003 [Corrected by N. J. A. Sloane, Jul 25 2008]
a(0) = 0, a(1) = 1; a(n) = Sum_{k=1..n-1} k*a(k). - Amarnath Murthy, Oct 29 2002
Stirling transform of a(n+1) = [1, 3, 12, 160, ...] is A083410(n) = [1, 4, 22, 154, ...]. - Michael Somos, Mar 04 2004
First Eulerian transform of A000027. See A000142 for definition of FET. - Ross La Haye, Feb 14 2005
From Paul Barry, Apr 18 2005: (Start)
a(n) = 0^n + Sum_{k=0..n} (-1)^(n-k-1)*T(n-1, k)*cos(Pi*(n-k-1)/2)^2.
T(n,k) = abs(A008276(n, k)). (End)
E.g.f.: (2 - x^2)/(2 - 2*x).
E.g.f. of a(n+2), n>=0, is 1/(1-x)^3.
E.g.f.: 1 + sinh(log(1/(1-x))). - Geoffrey Critzer, Dec 12 2010
a(n+1) = (-1)^n * A136656(n,1), n>=1.
a(n) = n!/2 for n>=2 (proof from the e.g.f). - Wolfdieter Lang, Apr 30 2010
a(n) = (n-2)! * t(n-1), n>1, where t(n) is the n-th triangular number (A000217). - Gary Detlefs, May 21 2010
a(n) = ( A000254(n) - 2* A001711(n-3) )/3, n>2. - Gary Detlefs, May 24 2010
O.g.f.: 1 + x*Sum_{n>=0} n^n*x^n/(1 + n*x)^n. - Paul D. Hanna, Sep 13 2011
a(n) = if n < 2 then 1, otherwise Pochhammer(n,n)/binomial(2*n,n). - Peter Luschny, Nov 07 2011
a(n) = Sum_{k=0..floor(n/2)} s(n,n-2*k) where s(n,k) are Stirling number of the first kind, A048994. - Mircea Merca, Apr 07 2012
a(n-1), n>=3, is M_1([2,1^(n-2)])/n = (n-1)!/2, with the M_1 multinomial numbers for the given n-1 part partition of n. See the second to last entry in line n>=3 of A036038, and the above necklace comment by W. Lang. - Wolfdieter Lang, Jun 26 2012
G.f.: A(x) = 1 + x + x^2/(G(0)-2*x) where G(k) = 1 - (k+1)*x/(1 - x*(k+3)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Dec 26 2012.
G.f.: 1 + x + (Q(0)-1)*x^2/(2*(sqrt(x)+x)), where Q(k) = 1 + (k+2)*sqrt(x)/(1 - sqrt(x)/(sqrt(x) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x + (x*Q(x)-x^2)/(2*(sqrt(x)+x)), where Q(x) = Sum_{n>=0} (n+1)!*x^n*sqrt(x)*(sqrt(x) + x*(n+2)). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x/2 + (Q(0)-1)*x/(2*(sqrt(x)+x)), where Q(k) = 1 + (k+1)*sqrt(x)/(1 - sqrt(x)/(sqrt(x) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x + x^2*G(0)/2, where G(k) = 1 + 1/(1 - x/(x + 1/(k+3)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
G.f.: 1+x + x^2*W(0), where W(k) = 1 - x*(k+3)/( x*(k+3) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
From Antti Karttunen, Dec 19 2015: (Start)
a(0)=a(1)=1; after which, for even n: a(n) = (n/2) * (n-1)!, and for odd n: a(n) = (n-1)/2 * ((n-1)! + (n-2)!). [The formula was empirically found after viewing these numbers in factorial base, A007623, and is easily proved by considering formulas from Lang (Apr 30 2010) and Detlefs (May 21 2010) shown above.]
For n >= 1, a(2*n+1) = a(2*n) + A153880(a(2*n)). [Follows from above.] (End)
Inverse Stirling transform of a(n) is (-1)^(n-1)*A009566(n). - Anton Zakharov, Aug 07 2016
a(n) ~ sqrt(Pi/2)*n^(n+1/2)/exp(n). - Ilya Gutkovskiy, Aug 07 2016
a(n) = A006595(n-1)*n/A000124(n) for n>=2. - Anton Zakharov, Aug 23 2016
a(n) = A001563(n-1) - A001286(n-1) for n>=2. - Anton Zakharov, Sep 23 2016
From Peter Bala, May 24 2017: (Start)
The o.g.f. A(x) satisfies the Riccati equation x^2*A'(x) + (x - 1)*A(x) + 1 - x^2 = 0.
G.f.: A(x) = 1 + x + x^2/(1 - 3*x/(1 - x/(1 - 4*x/(1 - 2*x/(1 - 5*x/(1 - 3*x/(1 - ... - (n + 2)*x/(1 - n*x/(1 - ... ))))))))) (apply Stokes, 1982).
A(x) = 1 + x + x^2/(1 - 2*x - x/(1 - 3*x/(1 - 2*x/(1 - 4*x/(1 - 3*x/(1 - 5*x/(1 - ... - n*x/(1 - (n+2)*x/(1 - ... ))))))))). (End)
H(x) = (1 - (1 + x)^(-2)) / 2 = x - 3*x^2/2! + 12*x^3/3! - ..., an e.g.f. for the signed sequence here (n!/2!), ignoring the first two terms, is the compositional inverse of G(x) = (1 - 2*x)^(-1/2) - 1 = x + 3*x^2/2! + 15*x^3/3! + ..., an e.g.f. for A001147. Cf. A094638. H(x) is the e.g.f. for the sequence (-1)^m * m!/2 for m = 2,3,4,... . Cf. A001715 for n!/3! and A001720 for n!/4!. Cf. columns of A094587, A173333, and A213936 and rows of A138533. - Tom Copeland, Dec 27 2019
From Amiram Eldar, Jan 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 2*(e-1).
Sum_{n>=0} (-1)^n/a(n) = 2/e. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Aug 20 2001
Further terms from Simone Severini, Oct 15 2004

A049352 A triangle of numbers related to triangle A030524.

Original entry on oeis.org

1, 4, 1, 20, 12, 1, 120, 128, 24, 1, 840, 1400, 440, 40, 1, 6720, 16240, 7560, 1120, 60, 1, 60480, 201600, 129640, 27720, 2380, 84, 1, 604800, 2681280, 2275840, 656320, 80080, 4480, 112, 1, 6652800, 38142720, 41370560, 15402240, 2498160, 196560
Offset: 1

Views

Author

Keywords

Comments

a(n,1) = A001715(n+2). a(n,m)=: S1p(4; n,m), a member of a sequence of lower triangular Jabotinsky matrices with nonnegative entries including S1p(1; n,m)= A008275 (unsigned Stirling first kind), S1p(2; n,m)= A008297(n,m) (unsigned Lah numbers), S1p(3; n,m)= A046089(n,m).
The signed lower triangular matrix (-1)^(n-m)*a(n,m) is inverse to matrix A035469(n,m) := S2(4; n,m). The monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
a(n,m) enumerates unordered increasing n-vertex m-forests composed of m unary trees (out-degree r from {0,1}) whose vertices of depth (distance from the root) j>=1 come in j+3 colors. The k roots (j=0) each come in one (or no) color. - Wolfdieter Lang, Oct 12 2007
Also the Bell transform of A001715. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016

Examples

			Triangle starts:
{1};
{4,1};
{20,12,1};
{120,128,24,1};
{840,1400,440,40,1};
...
E.g. Row polynomial E(3,x)= 20*x + 12*x^2 + x^3.
a(4,2)=128=4*(4*5)+3*(4*4) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*4*5)=20 colored versions, e.g. ((1c1),(2c1,3c4,4c3)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 4 colors, c1..c4, can be chosen and the vertex labeled 4 with j=2 can come in 5 colors, e.g. c1..c5. Therefore there are 4*((1)*(1*4*5))=80 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*4)*(1*4))=48 such forests, e.g. ((1c1,3c2)(2c1,4c4)) or ((1c1,3c3)(2c1,4c2)), etc. - _Wolfdieter Lang_, Oct 12 2007
		

Crossrefs

Cf. A049377 (row sums).
Alternating row sums A134137.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> (n+3)!/6, 10); # Peter Luschny, Jan 28 2016
  • Mathematica
    a[n_, k_] := (n!* Sum[(-1)^(k-j)*Binomial[k, j]*Binomial[n+3*j-1, 3*j-1], {j, 1, k}])/(3^k*k!); Table[a[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
    rows = 10;
    M = BellMatrix[(# + 3)!/6&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • Maxima
    a(n,k):=(n!*sum((-1)^(k-j)*binomial(k,j)*binomial(n+3*j-1,3*j-1),j,1,k))/(3^k*k!); /* Vladimir Kruchinin, Apr 01 2011 */

Formula

a(n, m) = n!*A030524(n, m)/(m!*3^(n-m)); a(n, m) = (3*m+n-1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n
a(n,k) = (n!*sum(j=1..k, (-1)^(k-j)*binomial(k,j)*binomial(n+3*j-1,3*j-1)))/(3^k*k!). [Vladimir Kruchinin, Apr 01 2011]

A049353 A triangle of numbers related to triangle A030526.

Original entry on oeis.org

1, 5, 1, 30, 15, 1, 210, 195, 30, 1, 1680, 2550, 675, 50, 1, 15120, 34830, 14025, 1725, 75, 1, 151200, 502740, 287280, 51975, 3675, 105, 1, 1663200, 7692300, 5961060, 1482705, 151200, 6930, 140, 1, 19958400, 124740000, 126913500, 41545980
Offset: 1

Keywords

Comments

a(n,1)= A001720(n+3). a(n,m)=: S1p(5; n,m), a member of a sequence of lower triangular Jabotinsky matrices with nonnegative entries, including S1p(1; n,m)= A008275 (unsigned Stirling first kind), S1p(2; n,m)= A008297(n,m) (unsigned Lah numbers), S1p(3; n,m)= A046089(n,m), S1p(4; n,m)= A049352(n,m).
Signed lower triangular matrix (-1)^(n-m)*a(n,m) is inverse to matrix A049029(n,m) := S2(5; n,m). The monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
a(n,m) enumerates unordered increasing n-vertex m-forests composed of m unary trees (out-degree r from {0,1}) whose vertices of depth (distance from the root) j>=1 come in j+4 colors. The k roots (j=0) each come in one (or no) color. - Wolfdieter Lang, Oct 12 2007
Also the Bell transform of A001720. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016

Examples

			Triangle begins:
  {1};
  {5,1};
  {30,15,1}; E.g., row polynomial E(3,x)=30*x+15*x^2+x^3.
  {210,195,30,1};
  ...
a(4,2)= 195 =4*(5*6)+3*(5*5) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*5*6)=30 colored versions, e.g., ((1c1),(2c1,3c5,4c6)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 5 colors, c1..c5, can be chosen and the vertex labeled 4 with j=2 can come in 6 colors, e.g., c1..c6. Therefore there are 4*((1)*(1*5*6))=120 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*5)*(1*5))=75 such forests, e.g., ((1c1,3c4)(2c1,4c5)) or ((1c1,3c5)(2c1,4c2)), etc. - _Wolfdieter Lang_, Oct 12 2007
		

Crossrefs

Cf. A049378 (row sums).
Cf. A134139 (alternating row sums).

Programs

Formula

a(n, m) = n!*A030526(n, m)/(m!*4^(n-m)); a(n, m) = (4*m+n-1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n
a(n,k) = (n!*sum(j=1..k, (-1)^(k-j)*binomial(k,j)*binomial(n+4*j-1,4*j-1)))/(4^k*k!). - Vladimir Kruchinin, Apr 01 2011

A157383 A partition product of Stirling_1 type [parameter k = -3] with biggest-part statistic (triangle read by rows).

Original entry on oeis.org

1, 1, 3, 1, 9, 12, 1, 45, 48, 60, 1, 165, 480, 300, 360, 1, 855, 3840, 3600, 2160, 2520, 1, 3843, 29400, 46200, 30240, 17640, 20160, 1, 21819, 272832, 520800, 443520, 282240, 161280, 181440
Offset: 1

Author

Peter Luschny, Mar 07 2009, Mar 14 2009

Keywords

Comments

Partition product of prod_{j=0..n-2}(k-n+j+2) and n! at k = -3,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A144353.
Same partition product with length statistic is A046089.
Diagonal a(A000217(n)) = rising_factorial(3,n-1), A001710(n+1).
Row sum is A049376.

Formula

T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-2}(j-n-1).

A049374 A triangle of numbers related to triangle A030527.

Original entry on oeis.org

1, 6, 1, 42, 18, 1, 336, 276, 36, 1, 3024, 4200, 960, 60, 1, 30240, 66024, 23400, 2460, 90, 1, 332640, 1086624, 557424, 87360, 5250, 126, 1, 3991680, 18805248, 13349952, 2916144, 255360, 9912, 168, 1, 51891840, 342486144, 325854144, 95001984
Offset: 1

Keywords

Comments

a(n,1) = A001725(n+4). a(n,m)=: S1p(6; n,m), a member of a sequence of lower triangular Jabotinsky matrices with nonnegative entries, including S1p(1; n,m) = A008275 (unsigned Stirling first kind), S1p(2; n,m) = A008297(n,m) (unsigned Lah numbers). S1p(3; n,m) = A046089(n,m), S1p(4; n,m) = A049352, S1p(5; n,m) = A049353(n,m).
Signed lower triangular matrix (-1)^(n-m)*a(n,m) is inverse to matrix A049385(n,m) =: S2(6; n,m). The monic row polynomials E(n,x) := Sum_{m=1..n} (a(n,m)*x^m), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
a(n,m) enumerates unordered increasing n-vertex m-forests composed of m unary trees (out-degree r from {0,1}) whose vertices of depth (distance from the root) j >= 1 come in j+5 colors. The k roots (j=0) each come in one (or no) color. - Wolfdieter Lang, Oct 12 2007

Examples

			Triangle begins
       1;
       6,       1;
      42,      18,      1;
     336,     276,     36,     1;
    3024,    4200,    960,    60,    1;
   30240,   66024,  23400,  2460,   90,   1;
  332640, 1086624, 557424, 87360, 5250, 126, 1;
E.g., row polynomial E(3,x) = 42*x + 18*x^2 + x^3.
a(4,2) = 276 = 4*(6*7) + 3*(6*6) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*6*7)=42 colored versions, e.g., ((1c1),(2c1,3c6,4c3)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 6 colors, c1..c6, can be chosen and the vertex labeled 4 with j=2 can come in 7 colors, e.g., c1..c7. Therefore there are 4*((1)*(1*6*7))=168 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*6)*(1*6))=108 such forests, e.g., ((1c1,3c4)(2c1,4c6)) or ((1c1,3c5)(2c1,4c2)), etc. - _Wolfdieter Lang_, Oct 12 2007
		

Crossrefs

Cf. A049402 (row sums), A134140 (alternating row sums).

Programs

  • GAP
    Flat(List([1..10],n->Factorial(n)*List([1..n],k->Sum([1..k],j->(-1)^(k-j)*Binomial(k,j)*Binomial(n+5*j-1,5*j-1)/(5^k*Factorial(k)))))); # Muniru A Asiru, Jun 23 2018
  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> (n+5)!/120, 10); # Peter Luschny, Jan 28 2016
  • Mathematica
    a[n_, k_] = n!*Sum[(-1)^(k-j)*Binomial[k, j]*Binomial[n + 5j - 1, 5j - 1]/(5^k*k!), {j, 1, k}] ;
    Flatten[Table[a[n, k], {n, 1, 9}, {k, 1, n}] ][[1 ;; 40]]
    (* Jean-François Alcover, Jun 01 2011, after Vladimir Kruchinin *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
    rows = 10;
    M = BellMatrix[(#+5)!/120&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • Maxima
    a(n,k)=(n!*sum((-1)^(k-j)*binomial(k,j)*binomial(n+5*j-1,5*j-1),j,1,k))/(5^k*k!); /* Vladimir Kruchinin, Apr 01 2011 */
    
  • PARI
    a(n,k)=(n!*sum(j=1,k,(-1)^(k-j)*binomial(k,j)*binomial(n+5*j-1,5*j-1)))/(5^k*k!);
    for(n=1,12,for(k=1,n,print1(a(n,k),", "));print()); /* print triangle */ /* Joerg Arndt, Apr 01 2011 */
    

Formula

a(n, m) = n!*A030527(n, m)/(m!*5^(n-m)); a(n, m) = (5*m+n-1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n < m; a(n, 0) := 0; a(1, 1)=1. E.g.f. for m-th column: ((x*(5 - 10*x + 10*x^2 - 5*x^3 + x^4)/(5*(1-x)^5))^m)/m!.
a(n,k) = n!* Sum_{j=1..k} (-1)^(k-j)*binomial(k,j)*binomial(n+5*j-1,5*j-1) /(5^k*k!). - Vladimir Kruchinin, Apr 01 2011

A134141 Generalized unsigned Stirling1 triangle, S1p(7).

Original entry on oeis.org

1, 7, 1, 56, 21, 1, 504, 371, 42, 1, 5040, 6440, 1295, 70, 1, 55440, 114520, 36225, 3325, 105, 1, 665280, 2116800, 983920, 135975, 7105, 147, 1, 8648640, 40884480, 26714800, 5199145, 398860, 13426, 196, 1, 121080960, 826338240, 735469280
Offset: 1

Author

Wolfdieter Lang, Oct 12 2007

Keywords

Comments

Signed lower triangular matrix (-1)^(n-m)*a(n,m) is inverse to matrix A092082(n, m) =: S2(7; n,m). The monic row polynomials E(n,x) := sum(a(n,m)*x^m, m=1..n), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
a(n,m) enumerates unordered increasing n-vertex m-forests composed of m unary trees (out-degree r from {0,1}) whose vertices of depth (distance from the root) j>=1 come in j+6 colors. The k roots (j=0) each come in one (or no) color. - Wolfdieter Lang, Oct 05 2007
A triangle of numbers related to triangle A132166.
a(n,1)= A001730(n,5), n>=1. a(n,m)=: S1p(7; n,m), a member of a sequence of lower triangular Jabotinsky matrices with nonnegative entries, including S1p(1; n, m)= A008275 (unsigned Stirling first kind), S1p(2; n,m)= A008297(n, m) (unsigned Lah numbers). S1p(3; n,m)= A046089(n,m), S1p(4; n,m)= A049352, S1p(5; n,m)= A049353(n,m), S1p(6; n,m)= A049374(n, m).
The Bell transform of factorial(n+6)/factorial(6). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016

Examples

			{1}; {7,1}; {56,21,1}; {504,371,42,1}; ... E.g. Row polynomial E(3,x)=56*x+21*x^2+x^3.
a(4,2)= 371 = 4*(7*8)+3*(7*7) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*7*8)=56 colored versions, e.g., ((1c1),(2c1,3c7,4c5)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 7 colors, c1..c7, can be chosen and the vertex labeled 4 with j=2 can come in 8 colors, e.g., c1..c8. Therefore there are 4*((1)*(1*7*8))=224 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*7)*(1*7))=147 such forests, e.g. ((1c1,3c4)(2c1,4c7)) or ((1c1,3c6)(2c1,4c2)), etc. - _Wolfdieter Lang_, Oct 05 2007
		

Crossrefs

First column A001730(n+5), n>=1.
Row sums A132164. Alternating row sums A132165.

Programs

Formula

a(n, m) = n!*A132166(n, m)/(m!*6^(n-m)); a(n, m) = (6*m+n-1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n

A144880 Partition number array, called M31hat(3).

Original entry on oeis.org

1, 3, 1, 12, 3, 1, 60, 12, 9, 3, 1, 360, 60, 36, 12, 9, 3, 1, 2520, 360, 180, 144, 60, 36, 27, 12, 9, 3, 1, 20160, 2520, 1080, 720, 360, 180, 144, 108, 60, 36, 27, 12, 9, 3, 1, 181440, 20160, 7560, 4320, 3600, 2520, 1080, 720, 540, 432, 360, 180, 144, 108, 81, 60, 36, 27
Offset: 1

Author

Wolfdieter Lang Oct 09 2008

Keywords

Comments

Each partition of n, ordered as in Abramowitz-Stegun (A-St order; for the reference see A134278), is mapped to a nonnegative integer a(n,k) =: M31hat(3;n,k) with the k-th partition of n in A-St order.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42,...].
This is the third (K=3) member of a family of partition number arrays: A107106, A134133,...

Examples

			[1];[3,1];[12,3,1];[60,12,9,3,1];[360,60,36,12,9,3,1];...
a(4,3)= 9 = |S1(3;2,1)|^2. The relevant partition of 4 is (2^2).
		

Crossrefs

A144882 (row sums).
A134133 (M31hat(2) array). A144885 (M31hat(4) array).

Formula

a(n,k)= product(|S1(3;j,1)|^e(n,k,j),j=1..n) with |S1(3;n,1)|= A046089(1,n) = [1,3,12,60,...], n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n.
Showing 1-10 of 11 results. Next