A077134 Duplicate of A001710.
1, 1, 1, 3, 12, 60, 360, 2520, 20160, 181440, 1814400, 19958400, 239500800
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
The triangle begins 1, 1, 2, 2, 1, 3, 2, 4, 3, 1, 3, 2, 5, 4, 1, 3, 6, 5, 4, 2, 1, 4, 3, 7, 6, 5, 2, 1, 4, 8, 7, 6, 5, 3, 2, 1, 5, 4, 9, 8, 7, 6, 3, 2, 1, 5, 10, 9, 8, 7, 6, 4, 3, 2, 1, ...
a375300_row(n) = if (n<2, [1], my(m=n!\2); forperm(n, p, m--; if (m==0, return(Vec(p)))))
First six rows: 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6
a002260 n k = k a002260_row n = [1..n] a002260_tabl = iterate (\row -> map (+ 1) (0 : row)) [1] -- Reinhard Zumkeller, Aug 04 2014, Jul 03 2012
at:=0; for n from 1 to 150 do for i from 1 to n do at:=at+1; lprint(at,i); od: od: # N. J. A. Sloane, Nov 01 2006 seq(seq(i,i=1..k),k=1..13); # Peter Luschny, Jul 06 2009
FoldList[{#1, #2} &, 1, Range[2, 13]] // Flatten (* Robert G. Wilson v, May 10 2011 *) Flatten[Table[Range[n],{n,20}]] (* Harvey P. Dale, Jun 20 2013 *)
T(n,k):=sum((i+k)*binomial(i+k-1,i)*binomial(k,n-i-k+1)*(-1)^(n-i-k+1),i,max(0,n+1-2*k),n-k+1); /* Vladimir Kruchinin, Oct 18 2013 */
t1(n)=n-binomial(floor(1/2+sqrt(2*n)),2) /* this sequence */
A002260(n)=n-binomial((sqrtint(8*n)+1)\2,2) \\ M. F. Hasler, Mar 10 2014
from math import isqrt, comb def A002260(n): return n-comb((m:=isqrt(k:=n<<1))+(k>m*(m+1)),2) # Chai Wah Wu, Nov 08 2024
(1-x)^-1 * (-log(1-x)) = x + 3/2*x^2 + 11/6*x^3 + 25/12*x^4 + ... G.f. = x + x^2 + 5*x^3 + 14*x^4 + 94*x^5 + 444*x^6 + 3828*x^7 + 25584*x^8 + ...
a:=[]; for n in [1..22] do a:=a cat [Abs(StirlingFirst(n,2))]; end for; a; // Marius A. Burtea, Jan 01 2020
A000254 := proc(n) option remember; if n<=1 then n else n*A000254(n-1)+(n-1)!; fi; end: seq(A000254(n),n=0..21); a := n -> add(n!/k, k=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Jan 22 2008
Table[ (PolyGamma[ m ]+EulerGamma) (m-1)!, {m, 1, 24} ] (* Wouter Meeussen *) Table[ n!*HarmonicNumber[n], {n, 0, 19}] (* Robert G. Wilson v, May 21 2005 *) Table[Sum[1/i,{i,1,n}]/Product[1/i,{i,1,n}],{n,1,30}] (* Alexander Adamchuk, Jul 11 2006 *) Abs[StirlingS1[Range[20],2]] (* Harvey P. Dale, Aug 16 2011 *) Table[Gamma'[n + 1] /. EulerGamma -> 0, {n, 0, 30}] (* Li Han, Feb 14 2024*)
a(n):=(-1)^(n+1)/2*(n+1)*sum(k*bern(k-1)*stirling1(n,k),k,1,n); /* Vladimir Kruchinin, Nov 20 2016 */
A000254 := proc(n) begin n*A000254(n-1)+fact(n-1) end_proc: A000254(1) := 1:
{a(n) = if( n<0, 0, (n+1)! / 2 * sum( k=1, n, 1 / k / (n+1-k)))} /* Michael Somos, Feb 05 2004 */
[stirling_number1(i, 2) for i in range(1, 22)] # Zerinvary Lajos, Jun 27 2008
Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 2, 3, 1; 0, 6, 11, 6, 1; 0, 24, 50, 35, 10, 1; 0, 120, 274, 225, 85, 15, 1; 0, 720, 1764, 1624, 735, 175, 21, 1; 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1; ... --------------------------------------------------- Production matrix is 0, 1 0, 1, 1 0, 1, 2, 1 0, 1, 3, 3, 1 0, 1, 4, 6, 4, 1 0, 1, 5, 10, 10, 5, 1 0, 1, 6, 15, 20, 15, 6, 1 0, 1, 7, 21, 35, 35, 21, 7, 1 ... From _Wolfdieter Lang_, May 09 2017: (Start) Three term recurrence: 50 = T(5, 2) = 1*6 + (5-1)*11 = 50. Recurrence from the Sheffer a-sequence [1, 1/2, 1/6, 0, ...]: 50 = T(5, 2) = (5/2)*(binomial(1, 1)*1*6 + binomial(2, 1)*(1/2)*11 + binomial(3, 1)*(1/6)*6 + 0) = 50. The vanishing z-sequence produces the k=0 column from T(0, 0) = 1. (End) Elementary symmetric function T(4, 2) = sigma^{(3)}_2 = 1*2 + 1*3 + 2*3 = 11. Here the cells (polytopes) are 3 rectangles with total area 11. - _Wolfdieter Lang_, May 28 2017 O.g.f.s of diagonals: d=2 (third diagonal) [0, 6, 50, ...] has D(2,t) = P(2, t)/(1-t)^5, with P(2, t) = 2 + t, the n = 2 row of A288874. - _Wolfdieter Lang_, Jul 20 2017 Boas-Buck recurrence for column k = 2 and n = 5: T(5, 2) = (5!*2/3)*((3/8)*T(2,2)/2! + (5/12)*T(3,2)/3! + (1/2)*T(4,2)/4!) = (5!*2/3)*(3/16 + (5/12)*3/3! + (1/2)*11/4!) = 50. The beta sequence begins: {1/2, 5/12, 3/8, ...}. - _Wolfdieter Lang_, Aug 11 2017
a132393 n k = a132393_tabl !! n !! k a132393_row n = a132393_tabl !! n a132393_tabl = map (map abs) a048994_tabl -- Reinhard Zumkeller, Nov 06 2013
a132393_row := proc(n) local k; seq(coeff(expand(pochhammer (x,n)),x,k),k=0..n) end: # Peter Luschny, Nov 28 2010
p[t_] = 1/(1 - t)^x; Table[ ExpandAll[(n!)SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[(n!)* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a] (* Roger L. Bagula, Apr 18 2008 *) Flatten[Table[Abs[StirlingS1[n,i]],{n,0,10},{i,0,n}]] (* Harvey P. Dale, Feb 04 2014 *)
create_list(abs(stirling1(n,k)),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
column(n,k) = my(v1, v2); v1 = vector(n-1, i, 0); v2 = vector(n, i, 0); v2[1] = 1; for(i=1, n-1, v1[i] = (i+k)*(i+k-1)/2*v2[i]; for(j=1, i-1, v1[j] *= (i-j)*(i+k)/(i-j+2)); v2[i+1] = vecsum(v1)/i); v2 \\ generates n first elements of the k-th column starting from the first nonzero element. - Mikhail Kurkov, Mar 05 2025
G.f. = x^2 + 6*x^3 + 36*x^4 + 240*x^5 + 1800*x^6 + 15120*x^7 + 141120*x^8 + ... a(10) = (1+2+3+4+5+6+7+8+9)*(1*2*3*4*5*6*7*8*9) = 16329600. - _Reinhard Zumkeller_, May 15 2010
a001286 n = sum[1..n-1] * product [1..n-1] -- Reinhard Zumkeller, Aug 01 2011
[(n-1)*Factorial(n)/2: n in [2..25]]; // Vincenzo Librandi, Sep 09 2016
seq(sum(mul(j,j=3..n), k=2..n), n=2..21); # Zerinvary Lajos, Jun 01 2007
Table[Sum[n!, {i, 2, n}]/2, {n, 2, 20}] (* Zerinvary Lajos, Jul 12 2009 *) nn=20;With[{a=Accumulate[Range[nn]],t=Range[nn]!},Times@@@Thread[{a,t}]] (* Harvey P. Dale, Jan 26 2013 *) Table[(n - 1) n! / 2, {n, 2, 30}] (* Vincenzo Librandi, Sep 09 2016 *)
A001286(n):=(n-1)*n!/2$ makelist(A001286(n),n,1,30); /* Martin Ettl, Nov 03 2012 */
a(n)=(n-1)*n!/2 \\ Charles R Greathouse IV, Nov 20 2012
from _future_ import division A001286_list = [1] for n in range(2,100): A001286_list.append(A001286_list[-1]*n*(n+1)//(n-1)) # Chai Wah Wu, Apr 11 2018
[(n-1)*factorial(n)/2 for n in range(2, 21)] # Zerinvary Lajos, May 16 2009
Triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 n=0: 1 n=1: 1 1 n=2: 2 3 1 n=3: 6 11 6 1 n=4: 24 50 35 10 1 n=5: 120 274 225 85 15 1 n=6: 720 1764 1624 735 175 21 1 n=7: 5040 13068 13132 6769 1960 322 28 1 n=8: 40320 109584 118124 67284 22449 4536 546 36 1 n=9: 362880 1026576 1172700 723680 269325 63273 9450 870 45 1 n=10: 3628800 10628640 12753576 8409500 3416930 902055 157773 18150 1320 55 1 [Reformatted and extended by _Wolfdieter Lang_, Feb 05 2013] T(3,2) = 6 because there are 6 permutations of {1,2,3,4} that have exactly 2 0's in their inversion vector: {1, 2, 4, 3}, {1, 3, 2, 4}, {1, 3, 4, 2}, {2, 1, 3, 4},{2, 3, 1, 4}, {2, 3, 4, 1}. The respective inversion vectors are {0, 0, 1}, {0, 1, 0}, {0, 2, 0}, {1, 0, 0}, {2, 0, 0}, {3, 0, 0}. - _Geoffrey Critzer_, May 07 2010 T(3,1)=11 since there are exactly 11 permutations of {1,2,3,4} with exactly 2 cycles, namely, (1)(234), (1)(243), (2)(134), (2)(143), (3)(124), (3)(142), (4)(123), (4)(143), (12)(34), (13)(24), and (14)(23). - _Dennis P. Walsh_, Jan 25 2011 From _Peter Bala_, Jul 21 2014: (Start) With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins / 1 \/1 \/1 \ / 1 \ | 1 1 ||0 1 ||0 1 | | 1 1 | | 2 2 1 ||0 1 1 ||0 0 1 |... = | 2 3 1 | | 6 6 3 1 ||0 2 2 1 ||0 0 1 1 | | 6 11 6 1 | |24 24 12 4 1||0 6 6 3 1||0 0 2 2 1| |24 50 35 10 1| |... ||... ||... | |... | (End)
a130534 n k = a130534_tabl !! n !! k a130534_row n = a130534_tabl !! n a130534_tabl = map (map abs) a008275_tabl -- Reinhard Zumkeller, Mar 18 2013
with(combinat): A130534 := proc(n,m): (-1)^(n+m)*stirling1(n+1,m+1) end proc: seq(seq(A130534(n,m), m=0..n), n=0..10); # Johannes W. Meijer, Oct 07 2009, revised Sep 11 2012 # The function BellMatrix is defined in A264428. # Adds (1,0,0,0, ..) as column 0 (and shifts the enumeration). BellMatrix(n -> n!, 9); # Peter Luschny, Jan 27 2016
Table[Table[ Length[Select[Map[ToInversionVector, Permutations[m]], Count[ #, 0] == n &]], {n, 0, m - 1}], {m, 0, 8}] // Grid (* Geoffrey Critzer, May 07 2010 *) rows = 10; t = Range[0, rows]!; T[n_, k_] := BellY[n, k, t]; Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
The triangle a(n, k) starts: n\k 1 2 3 4 5 6 7 8 9 1: 1 2: 1 1 3: 1 3 2 4: 1 7 12 6 5: 1 15 50 60 24 6: 1 31 180 390 360 120 7: 1 63 602 2100 3360 2520 720 8: 1 127 1932 10206 25200 31920 20160 5040 9: 1 255 6050 46620 166824 317520 332640 181440 40320 ... [Reformatted by _Wolfdieter Lang_, Mar 26 2015] ----------------------------------------------------- Row 5 of triangle is {1,15,50,60,24}, which is {1,15,25,10,1} times {0!,1!,2!,3!,4!}. From _Vladimir Shevelev_, Dec 22 2011: (Start) Also, for power sums, we have S_0(n) = C(n,1); S_1(n) = C(n,1) + C(n,2); S_2(n) = C(n,1) + 3*C(n,2) + 2*C(n,3); S_3(n) = C(n,1) + 7*C(n,2) + 12*C(n,3) + 6*C(n,4); S_4(n) = C(n,1) + 15*C(n,2) + 50*C(n,3) + 60*C(n,4) + 24*C(n,5); etc. (End) For X = [1,2,3], the sets T are {{}}, {{},{1,2}}, {{},{1,3}}, {{},{1,2,3}}, {{},{1,2},{1,2,3}}, {{},{1,3},{1,2,3}} and so a(3,1)=1, a(3,2)=3, a(3,3)=2. - _Michael Somos_, Apr 20 2013
Flat(List([1..10], n-> List([1..n], k-> Stirling2(n,k)* Factorial(k-1) ))); # G. C. Greubel, May 30 2019
[[StirlingSecond(n,k)*Factorial(k-1): k in [1..n]]: n in [1..10]]; // G. C. Greubel, May 30 2019
a := (n,k) -> add((-1)^(k-i)*binomial(k,i)*i^n, i=0..k)/k; seq(print(seq(a(n,k),k=1..n)),n=1..10); T := (n,k) -> add(eulerian1(n,j)*binomial(n-j,n-k), j=0..n): seq(print(seq(T(n,k),k=0..n)),n=0..9); # Peter Luschny, Jul 12 2013
a[n_, k_] = Sum[(-1)^(k-i) Binomial[k,i]*i^n, {i,0,k}]/k; Flatten[Table[a[n, k], {n, 10}, {k, n}]] (* Jean-François Alcover, May 02 2011 *)
{T(n, k) = if( k<0 || k>n, 0, n! * polcoeff( (x / log(1 + x + x^2 * O(x^n) ))^(n+1), n-k))}; /* Michael Somos, Oct 02 2002 */
{T(n,k) = stirling(n,k,2)*(k-1)!}; \\ G. C. Greubel, May 31 2019
# Assuming offset (n, k) = (0, 0). def T(n, k): if k > n: return 0 if k == 0: return 1 return k*T(n - 1, k - 1) + (k + 1)*T(n - 1, k) for n in range(9): print([T(n, k) for k in range(n + 1)]) # Peter Luschny, Apr 26 2022
def A163626_row(n) : x = polygen(ZZ,'x') A = [] for m in range(0, n, 1) : A.append((-x)^m) for j in range(m, 0, -1): A[j - 1] = j * (A[j - 1] - A[j]) return list(A[0]) for i in (1..7) : print(A163626_row(i)) # Peter Luschny, Jan 25 2012
[[stirling_number2(n,k)*factorial(k-1) for k in (1..n)] for n in (1..10)] # G. C. Greubel, May 30 2019
Triangle starts: 1; 1, 1; 1, 3, 2; 1, 6, 11, 6; 1, 10, 35, 50, 24; ...
Flat(List([1..10], n-> List([1..n], k-> Stirling1(n,n-k+1) ))); # G. C. Greubel, Dec 29 2019
a094638 n k = a094638_tabl !! (n-1) !! (k-1) a094638_row n = a094638_tabl !! (n-1) a094638_tabl = map reverse a130534_tabl -- Reinhard Zumkeller, Aug 01 2014
[(-1)^(k+1)*StirlingFirst(n,n-k+1): k in [1..n], n in [1..10]]; // G. C. Greubel, Dec 29 2019
T:=(n,k)->abs(Stirling1(n,n+1-k)): for n from 1 to 10 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form. # Emeric Deutsch, Aug 14 2006
Table[CoefficientList[Series[Product[1 + i x, {i,n}], {x,0,20}], x], {n,0,6}] (* Geoffrey Critzer, Feb 04 2011 *) Table[Abs@StirlingS1[n, n-k+1], {n, 10}, {k, n}]//Flatten (* Michael De Vlieger, Aug 29 2015 *)
create_list(abs(stirling1(n+1,n-k+1)),n,0,10,k,0,n); /* Emanuele Munarini, Jun 01 2012 */
{T(n,k)=if(n<1 || k>n,0,(n-1)!*polcoeff(polcoeff(x*y/(1 - x*y+x*O(x^n))^(1 + 1/y),n,x),k,y))} /* Paul D. Hanna, Jul 21 2011 */
[[stirling_number1(n, n-k+1) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Dec 29 2019
a001715 = (flip div 6) . a000142 -- Reinhard Zumkeller, Aug 31 2014
[Factorial(n)/6: n in [3..30]]; // Vincenzo Librandi, Jun 20 2011
f := proc(n) n!/6; end; BB:= [S, {S = Prod(Z,Z,C), C = Union(B,Z,Z), B = Prod(Z,C)}, labelled]: seq(combstruct[count](BB, size=n)/12, n=3..20); # Zerinvary Lajos, Jun 19 2008 G(x):=1/(1-x)^4: f[0]:=G(x): for n from 1 to 18 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..16); # Zerinvary Lajos, Apr 01 2009
a[n_]:=n!/6; (*Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *) Range[3,30]!/6 (* Harvey P. Dale, Aug 12 2012 *)
a(n)=n!/6 \\ Charles R Greathouse IV, Jan 12 2012
Comments