Original entry on oeis.org
1, 1, 6, 46, 436, 4956, 65776, 996976, 16957536, 319259296, 6581662336, 147290942976, 3552885191296, 91827536814976, 2530228890080256, 74003737259670016, 2288810287491774976, 74607500831801289216, 2555587654482227055616, 91746983502042106018816
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
binomial(n-1, j-1)*(j+3)!/4!*a(n-j), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Aug 01 2017
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, j - 1]*(j + 3)!/4!*a[n - j], {j, 1, n}];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 04 2018, after Alois P. Heinz *)
A144355
Partition number array, called M31(5), related to A049353(n,m)= |S1(5;n,m)| (generalized Stirling triangle).
Original entry on oeis.org
1, 5, 1, 30, 15, 1, 210, 120, 75, 30, 1, 1680, 1050, 1500, 300, 375, 50, 1, 15120, 10080, 15750, 9000, 3150, 9000, 1875, 600, 1125, 75, 1, 151200, 105840, 176400, 220500, 35280, 110250, 63000, 78750, 7350, 31500, 13125, 1050, 2625, 105, 1, 1663200, 1209600, 2116800
Offset: 1
[1];[5,1];[30,15,1];[210,120,75,30,1];[1680,1050,1500,300,375,50,1];...
a(4,3)= 75 = 3*|S1(5;2,1)|^2. The relevant partition of 4 is (2^2).
A134139
Alternating row sums of triangle A049353 (S1p(5)).
Original entry on oeis.org
1, 4, 16, 44, -244, -7336, -112664, -1406336, -14058944, -66627136, 1879992896, 85070733824, 2359547577856, 54106723270144, 1055100890838016, 15611883969810944, 48348082318102016, -9055743653514520576, -521351156412528902144
Offset: 1
Original entry on oeis.org
1, 5, 30, 210, 1680, 15120, 151200, 1663200, 19958400, 259459200, 3632428800, 54486432000, 871782912000, 14820309504000, 266765571072000, 5068545850368000, 101370917007360000, 2128789257154560000, 46833363657400320000, 1077167364120207360000
Offset: 4
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 4..300
- S. Cerdá, A simple scheme to find the solutions to Brocard-Ramanujan Diophantine Equation n! + 1 = m^2, arXiv:1504.06694 [math.NT], 2015.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 264.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 (1962), 1-77.
- Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
- Index entries for sequences related to factorial numbers.
- Index to divisibility sequences.
A049374
A triangle of numbers related to triangle A030527.
Original entry on oeis.org
1, 6, 1, 42, 18, 1, 336, 276, 36, 1, 3024, 4200, 960, 60, 1, 30240, 66024, 23400, 2460, 90, 1, 332640, 1086624, 557424, 87360, 5250, 126, 1, 3991680, 18805248, 13349952, 2916144, 255360, 9912, 168, 1, 51891840, 342486144, 325854144, 95001984
Offset: 1
Triangle begins
1;
6, 1;
42, 18, 1;
336, 276, 36, 1;
3024, 4200, 960, 60, 1;
30240, 66024, 23400, 2460, 90, 1;
332640, 1086624, 557424, 87360, 5250, 126, 1;
E.g., row polynomial E(3,x) = 42*x + 18*x^2 + x^3.
a(4,2) = 276 = 4*(6*7) + 3*(6*6) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*6*7)=42 colored versions, e.g., ((1c1),(2c1,3c6,4c3)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 6 colors, c1..c6, can be chosen and the vertex labeled 4 with j=2 can come in 7 colors, e.g., c1..c7. Therefore there are 4*((1)*(1*6*7))=168 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*6)*(1*6))=108 such forests, e.g., ((1c1,3c4)(2c1,4c6)) or ((1c1,3c5)(2c1,4c2)), etc. - _Wolfdieter Lang_, Oct 12 2007
-
Flat(List([1..10],n->Factorial(n)*List([1..n],k->Sum([1..k],j->(-1)^(k-j)*Binomial(k,j)*Binomial(n+5*j-1,5*j-1)/(5^k*Factorial(k)))))); # Muniru A Asiru, Jun 23 2018
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> (n+5)!/120, 10); # Peter Luschny, Jan 28 2016
-
a[n_, k_] = n!*Sum[(-1)^(k-j)*Binomial[k, j]*Binomial[n + 5j - 1, 5j - 1]/(5^k*k!), {j, 1, k}] ;
Flatten[Table[a[n, k], {n, 1, 9}, {k, 1, n}] ][[1 ;; 40]]
(* Jean-François Alcover, Jun 01 2011, after Vladimir Kruchinin *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
rows = 10;
M = BellMatrix[(#+5)!/120&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
a(n,k)=(n!*sum((-1)^(k-j)*binomial(k,j)*binomial(n+5*j-1,5*j-1),j,1,k))/(5^k*k!); /* Vladimir Kruchinin, Apr 01 2011 */
-
a(n,k)=(n!*sum(j=1,k,(-1)^(k-j)*binomial(k,j)*binomial(n+5*j-1,5*j-1)))/(5^k*k!);
for(n=1,12,for(k=1,n,print1(a(n,k),", "));print()); /* print triangle */ /* Joerg Arndt, Apr 01 2011 */
A157385
A partition product of Stirling_1 type [parameter k = -5] with biggest-part statistic (triangle read by rows).
Original entry on oeis.org
1, 1, 5, 1, 15, 30, 1, 105, 120, 210, 1, 425, 1800, 1050, 1680, 1, 3075, 18600, 18900, 10080, 15120, 1, 15855, 174300, 338100, 211680, 105840, 151200, 1, 123515, 2227680, 4865700, 4327680, 2540160, 1209600, 1663200, 1, 757755
Offset: 1
A144891
Lower triangular array called S1hat(5) related to partition number array A144890.
Original entry on oeis.org
1, 5, 1, 30, 5, 1, 210, 55, 5, 1, 1680, 360, 55, 5, 1, 15120, 3630, 485, 55, 5, 1, 151200, 29820, 4380, 485, 55, 5, 1, 1663200, 321300, 39570, 5005, 485, 55, 5, 1, 19958400, 3225600, 421800, 43320, 5005, 485, 55, 5, 1, 259459200, 38808000, 4265100, 470550, 46445, 5005
Offset: 1
[1];[5,1];[30,5,1];[210,55,5,1];[1680,360,55,5,1];...
A134141
Generalized unsigned Stirling1 triangle, S1p(7).
Original entry on oeis.org
1, 7, 1, 56, 21, 1, 504, 371, 42, 1, 5040, 6440, 1295, 70, 1, 55440, 114520, 36225, 3325, 105, 1, 665280, 2116800, 983920, 135975, 7105, 147, 1, 8648640, 40884480, 26714800, 5199145, 398860, 13426, 196, 1, 121080960, 826338240, 735469280
Offset: 1
{1}; {7,1}; {56,21,1}; {504,371,42,1}; ... E.g. Row polynomial E(3,x)=56*x+21*x^2+x^3.
a(4,2)= 371 = 4*(7*8)+3*(7*7) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*7*8)=56 colored versions, e.g., ((1c1),(2c1,3c7,4c5)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 7 colors, c1..c7, can be chosen and the vertex labeled 4 with j=2 can come in 8 colors, e.g., c1..c8. Therefore there are 4*((1)*(1*7*8))=224 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*7)*(1*7))=147 such forests, e.g. ((1c1,3c4)(2c1,4c7)) or ((1c1,3c6)(2c1,4c2)), etc. - _Wolfdieter Lang_, Oct 05 2007
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> (n+6)!/6!, 9); # Peter Luschny, Jan 27 2016
-
a[n_, m_] /; n >= m >= 1 := a[n, m] = (6*m + n - 1)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n < m = 0; a[, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 39]] (* _Jean-François Alcover, Jun 01 2011, after formula *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[(# + 6)!/6! &, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
-
# uses[bell_matrix from A264428]
# Adds a column 1,0,0,0, ... at the left side of the triangle.
bell_matrix(lambda n: factorial(n+6)/factorial(6), 10) # Peter Luschny, Jan 18 2016
A144890
Partition number array, called M31hat(5).
Original entry on oeis.org
1, 5, 1, 30, 5, 1, 210, 30, 25, 5, 1, 1680, 210, 150, 30, 25, 5, 1, 15120, 1680, 1050, 900, 210, 150, 125, 30, 25, 5, 1, 151200, 15120, 8400, 6300, 1680, 1050, 900, 750, 210, 150, 125, 30, 25, 5, 1, 1663200, 151200, 75600, 50400, 44100, 15120, 8400, 6300, 5250, 4500
Offset: 1
[1];[5,1];[30,5,1];[210,30,25,5,1];[1680,210,150,30,25,5,1];...
a(4,3)= 25 = |S1(5;2,1)|^2. The relevant partition of 4 is (2^2).
Showing 1-9 of 9 results.
Comments