1, 5, 1, 30, 15, 1, 210, 195, 30, 1, 1680, 2550, 675, 50, 1, 15120, 34830, 14025, 1725, 75, 1, 151200, 502740, 287280, 51975, 3675, 105, 1, 1663200, 7692300, 5961060, 1482705, 151200, 6930, 140, 1, 19958400, 124740000, 126913500, 41545980
Offset: 1
Triangle begins:
{1};
{5,1};
{30,15,1}; E.g., row polynomial E(3,x)=30*x+15*x^2+x^3.
{210,195,30,1};
...
a(4,2)= 195 =4*(5*6)+3*(5*5) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*5*6)=30 colored versions, e.g., ((1c1),(2c1,3c5,4c6)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 5 colors, c1..c5, can be chosen and the vertex labeled 4 with j=2 can come in 6 colors, e.g., c1..c6. Therefore there are 4*((1)*(1*5*6))=120 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*5)*(1*5))=75 such forests, e.g., ((1c1,3c4)(2c1,4c5)) or ((1c1,3c5)(2c1,4c2)), etc. - _Wolfdieter Lang_, Oct 12 2007
A049374
A triangle of numbers related to triangle A030527.
Original entry on oeis.org
1, 6, 1, 42, 18, 1, 336, 276, 36, 1, 3024, 4200, 960, 60, 1, 30240, 66024, 23400, 2460, 90, 1, 332640, 1086624, 557424, 87360, 5250, 126, 1, 3991680, 18805248, 13349952, 2916144, 255360, 9912, 168, 1, 51891840, 342486144, 325854144, 95001984
Offset: 1
Triangle begins
1;
6, 1;
42, 18, 1;
336, 276, 36, 1;
3024, 4200, 960, 60, 1;
30240, 66024, 23400, 2460, 90, 1;
332640, 1086624, 557424, 87360, 5250, 126, 1;
E.g., row polynomial E(3,x) = 42*x + 18*x^2 + x^3.
a(4,2) = 276 = 4*(6*7) + 3*(6*6) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*6*7)=42 colored versions, e.g., ((1c1),(2c1,3c6,4c3)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 6 colors, c1..c6, can be chosen and the vertex labeled 4 with j=2 can come in 7 colors, e.g., c1..c7. Therefore there are 4*((1)*(1*6*7))=168 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*6)*(1*6))=108 such forests, e.g., ((1c1,3c4)(2c1,4c6)) or ((1c1,3c5)(2c1,4c2)), etc. - _Wolfdieter Lang_, Oct 12 2007
-
Flat(List([1..10],n->Factorial(n)*List([1..n],k->Sum([1..k],j->(-1)^(k-j)*Binomial(k,j)*Binomial(n+5*j-1,5*j-1)/(5^k*Factorial(k)))))); # Muniru A Asiru, Jun 23 2018
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> (n+5)!/120, 10); # Peter Luschny, Jan 28 2016
-
a[n_, k_] = n!*Sum[(-1)^(k-j)*Binomial[k, j]*Binomial[n + 5j - 1, 5j - 1]/(5^k*k!), {j, 1, k}] ;
Flatten[Table[a[n, k], {n, 1, 9}, {k, 1, n}] ][[1 ;; 40]]
(* Jean-François Alcover, Jun 01 2011, after Vladimir Kruchinin *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
rows = 10;
M = BellMatrix[(#+5)!/120&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
a(n,k)=(n!*sum((-1)^(k-j)*binomial(k,j)*binomial(n+5*j-1,5*j-1),j,1,k))/(5^k*k!); /* Vladimir Kruchinin, Apr 01 2011 */
-
a(n,k)=(n!*sum(j=1,k,(-1)^(k-j)*binomial(k,j)*binomial(n+5*j-1,5*j-1)))/(5^k*k!);
for(n=1,12,for(k=1,n,print1(a(n,k),", "));print()); /* print triangle */ /* Joerg Arndt, Apr 01 2011 */
A144886
Lower triangular array called S1hat(4) related to partition number array A144885.
Original entry on oeis.org
1, 4, 1, 20, 4, 1, 120, 36, 4, 1, 840, 200, 36, 4, 1, 6720, 1720, 264, 36, 4, 1, 60480, 12480, 2040, 264, 36, 4, 1, 604800, 118560, 16000, 2296, 264, 36, 4, 1, 6652800, 1081920, 149600, 17280, 2296, 264, 36, 4, 1, 79833600, 11793600, 1362240, 163680, 18304, 2296, 264
Offset: 1
[1];[4,1];[20,4,1];[120,36,4,1];[840,200,36,4,1];...
A134141
Generalized unsigned Stirling1 triangle, S1p(7).
Original entry on oeis.org
1, 7, 1, 56, 21, 1, 504, 371, 42, 1, 5040, 6440, 1295, 70, 1, 55440, 114520, 36225, 3325, 105, 1, 665280, 2116800, 983920, 135975, 7105, 147, 1, 8648640, 40884480, 26714800, 5199145, 398860, 13426, 196, 1, 121080960, 826338240, 735469280
Offset: 1
{1}; {7,1}; {56,21,1}; {504,371,42,1}; ... E.g. Row polynomial E(3,x)=56*x+21*x^2+x^3.
a(4,2)= 371 = 4*(7*8)+3*(7*7) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*7*8)=56 colored versions, e.g., ((1c1),(2c1,3c7,4c5)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 7 colors, c1..c7, can be chosen and the vertex labeled 4 with j=2 can come in 8 colors, e.g., c1..c8. Therefore there are 4*((1)*(1*7*8))=224 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*7)*(1*7))=147 such forests, e.g. ((1c1,3c4)(2c1,4c7)) or ((1c1,3c6)(2c1,4c2)), etc. - _Wolfdieter Lang_, Oct 05 2007
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> (n+6)!/6!, 9); # Peter Luschny, Jan 27 2016
-
a[n_, m_] /; n >= m >= 1 := a[n, m] = (6*m + n - 1)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n < m = 0; a[, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 39]] (* _Jean-François Alcover, Jun 01 2011, after formula *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[(# + 6)!/6! &, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
-
# uses[bell_matrix from A264428]
# Adds a column 1,0,0,0, ... at the left side of the triangle.
bell_matrix(lambda n: factorial(n+6)/factorial(6), 10) # Peter Luschny, Jan 18 2016
A144885
Partition number array, called M31hat(4).
Original entry on oeis.org
1, 4, 1, 20, 4, 1, 120, 20, 16, 4, 1, 840, 120, 80, 20, 16, 4, 1, 6720, 840, 480, 400, 120, 80, 64, 20, 16, 4, 1, 60480, 6720, 3360, 2400, 840, 480, 400, 320, 120, 80, 64, 20, 16, 4, 1, 604800, 60480, 26880, 16800, 14400, 6720, 3360, 2400, 1920, 1600, 840, 480, 400, 320
Offset: 1
[1];[4,1];[20,4,1];[120,20,16,4,1];[840,120,80,20,16,4,1];...
a(4,3)= 16 = |S1(4;2,1)|^2. The relevant partition of 4 is (2^2).
Showing 1-10 of 10 results.
Comments