A291709
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Sum_{j>=1} (-1)^(j-1)*binomial(-k,j-1)*x^j/j).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 13, 24, 1, 1, 1, 5, 22, 73, 120, 1, 1, 1, 6, 33, 154, 501, 720, 1, 1, 1, 7, 46, 273, 1306, 4051, 5040, 1, 1, 1, 8, 61, 436, 2721, 12976, 37633, 40320, 1, 1, 1, 9, 78, 649, 4956, 31701, 147484, 394353, 362880, 1
Offset: 0
Square array B(j,k) begins:
1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, ...
0, 1, 3, 6, 10, ...
0, 1, 4, 10, 20, ...
0, 1, 5, 15, 35, ...
0, 1, 6, 21, 56, ...
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, ...
1, 6, 13, 22, 33, ...
1, 24, 73, 154, 273, ...
1, 120, 501, 1306, 2721, ...
Columns k=0..10 give
A000012,
A000142,
A000262,
A049376,
A049377,
A049378,
A049402,
A132164,
A293986,
A293987,
A293988.
-
B[j_, k_] := (-1)^(j-1)*Binomial[-k, j-1];
A[0, ] = 1; A[n, k_] := (n-1)!*Sum[B[j, k]*A[n-j, k]/(n-j)!, {j, 1, n}];
Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2017 *)
A049352
A triangle of numbers related to triangle A030524.
Original entry on oeis.org
1, 4, 1, 20, 12, 1, 120, 128, 24, 1, 840, 1400, 440, 40, 1, 6720, 16240, 7560, 1120, 60, 1, 60480, 201600, 129640, 27720, 2380, 84, 1, 604800, 2681280, 2275840, 656320, 80080, 4480, 112, 1, 6652800, 38142720, 41370560, 15402240, 2498160, 196560
Offset: 1
Triangle starts:
{1};
{4,1};
{20,12,1};
{120,128,24,1};
{840,1400,440,40,1};
...
E.g. Row polynomial E(3,x)= 20*x + 12*x^2 + x^3.
a(4,2)=128=4*(4*5)+3*(4*4) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*4*5)=20 colored versions, e.g. ((1c1),(2c1,3c4,4c3)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 4 colors, c1..c4, can be chosen and the vertex labeled 4 with j=2 can come in 5 colors, e.g. c1..c5. Therefore there are 4*((1)*(1*4*5))=80 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*4)*(1*4))=48 such forests, e.g. ((1c1,3c2)(2c1,4c4)) or ((1c1,3c3)(2c1,4c2)), etc. - _Wolfdieter Lang_, Oct 12 2007
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> (n+3)!/6, 10); # Peter Luschny, Jan 28 2016
-
a[n_, k_] := (n!* Sum[(-1)^(k-j)*Binomial[k, j]*Binomial[n+3*j-1, 3*j-1], {j, 1, k}])/(3^k*k!); Table[a[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
rows = 10;
M = BellMatrix[(# + 3)!/6&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
a(n,k):=(n!*sum((-1)^(k-j)*binomial(k,j)*binomial(n+3*j-1,3*j-1),j,1,k))/(3^k*k!); /* Vladimir Kruchinin, Apr 01 2011 */
A157384
A partition product of Stirling_1 type [parameter k = -4] with biggest-part statistic (triangle read by rows).
Original entry on oeis.org
1, 1, 4, 1, 12, 20, 1, 72, 80, 120, 1, 280, 1000, 600, 840, 1, 1740, 9200, 9000, 5040, 6720, 1, 8484, 79100, 138600, 88200, 47040, 60480, 1, 57232, 874720, 1789200, 1552320, 940800, 483840, 604800, 1, 328752, 9532880
Offset: 1
A144354
Partition number array, called M31(4), related to A049352(n,m)= |S1(4;n,m)| (generalized Stirling triangle).
Original entry on oeis.org
1, 4, 1, 20, 12, 1, 120, 80, 48, 24, 1, 840, 600, 800, 200, 240, 40, 1, 6720, 5040, 7200, 4000, 1800, 4800, 960, 400, 720, 60, 1, 60480, 47040, 70560, 84000, 17640, 50400, 28000, 33600, 4200, 16800, 6720, 700, 1680, 84, 1, 604800, 483840, 752640, 940800, 504000, 188160
Offset: 1
[1];[4,1];[20,12,1];[120,80,48,24,1];[840,600,800,200,240,40,1];...
a(4,3)= 48 = 3*|S1(4;2,1)|^2. The relevant partition of 4 is (2^2).
A134138
Alternating row sums of triangle A046089 (S1p(3)).
Original entry on oeis.org
1, 2, 4, 2, -74, -916, -8672, -73564, -542852, -2595016, 18348496, 906083672, 21021502984, 406255974032, 7157641045696, 116383645516784, 1681549859135248, 18311613681506336, -3332917116147392
Offset: 1
-
Rest[CoefficientList[Series[1-E^(-x*(2-x)/(2*(1-x)^2)), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Oct 09 2013 *)
A380259
Expansion of e.g.f. exp( (1/(1-2*x)^(3/2) - 1)/3 ).
Original entry on oeis.org
1, 1, 6, 51, 561, 7566, 120711, 2221311, 46269126, 1075249881, 27560477331, 771948530046, 23446574573841, 767288588019201, 26905482997736526, 1006166248423254171, 39962774633459923881, 1679677496419394133846, 74471142324541556576151
Offset: 0
-
Table[Sum[3^k * 2^(n-k) * Abs[StirlingS1[n,k]] * BellB[k, 1/3], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jan 23 2025 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp((1/(1-2*x)^(3/2)-1)/3)))
Showing 1-6 of 6 results.
Comments