A136656 Coefficients for rewriting generalized falling factorials into ordinary falling factorials.
1, 0, -2, 0, 6, 4, 0, -24, -36, -8, 0, 120, 300, 144, 16, 0, -720, -2640, -2040, -480, -32, 0, 5040, 25200, 27720, 10320, 1440, 64, 0, -40320, -262080, -383040, -199920, -43680, -4032, -128, 0, 362880, 2963520, 5503680, 3764880, 1142400, 163968, 10752, 256, 0, -3628800, -36288000, -82978560
Offset: 0
Examples
Triangle starts: [1] [0, -2] [0, 6, 4] [0, -24, -36, -8] [0, 120, 300, 144, 16] ... Recurrence: a(4,2) = -7*a(3,2)-2*a(3,1) = -7*(-36) -2*(-24) = 300. a(4,2)=300 as sum over the M3 numbers A036040 for the 2 parts partitions of 4: 4*fallfac(-2,1)^1*fallfac(-2,3)^1 + 3*fallfac(-2,2)^2 = 4*(-2)*(-24)+3*6^2 = 300. Row n=3: [0,-24,-36,-8] for the coefficients in rewriting fallfac(-2*t,3)=((-1)^3)*risefac(2*t,3) = ((-1)^3)*(2*t)*(2*t+1)*(2*t+2) = 0*1 -24*t -36*t*(t-1) -8*t*(t-1)*(t-2).
References
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, ch. 8.4 p. 301 ff. Table 8.3 (with row n=0 and column k=0 and s=-2).
Links
- M. Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3
- W. Lang, First ten rows and more.
- Peter Luschny, The Bell Transform
Crossrefs
Programs
-
Maple
# The function BellMatrix is defined in A264428. BellMatrix(n -> (-1)^(n+1)*(n+2)!, 9); # Peter Luschny, Jan 27 2016
-
Mathematica
fallfac[n_, k_] := Pochhammer[n - k + 1, k]; a[n_, k_] := Sum[(-1)^(k - r)*Binomial[k, r]*fallfac[-2*r, n], {r, 0, k}]/k!; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 09 2013 *) BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; rows = 10; M = BellMatrix[(-1)^(# + 1)*(# + 2)!&, rows]; Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (*Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
Sage
@CachedFunction def T(n, k): # unsigned case if k == 0: return 1 if n == 0 else 0 return sum(T(n-j-1,k-1)*(j+1)*(j+2)*gamma(n)/gamma(n-j) for j in (0..n-k)) for n in range(7): [T(n,k) for k in (0..n)] # Peter Luschny, Mar 31 2015
Formula
Recurrence: a(n,k) = 0 if n
E.g.f. column k: (1/(1+x)^2 - 1)^k/k!, k>=0. From the Charalambides reference Theorem 8.14, p. 305 for s=-2.(hence a Sheffer triangle of Jabotinsky type).
a(n,k) = sum(((-1)^(k-r))*binomial(k,r)*fallfac(-2*r,n),r=0..k)/k!, n>=k>=0. From the Charalambides reference Theorem 8.15, p. 306 for s=-2.
a(n,k) = sum(S1(n,r)*S2(r,k)*(-2)^r,r=k..n) with the Stirling numbers S1(n,r)= A048993(n,r) and S2(r,k)= A048993(r,k). From the Charalambides reference Theorem 8.13, p.304 for s=-2.
a(n,k) = sum(M_3(n,k,q)*product(fallfac(-2,j)^e(n,m,q,j),j=1..n),q=1..p(n,k)) if n>=k>=1, else 0. Here p(n,k)=A008284(n,m), the number of k parts partitions of n, the M_3 partition numbers are given in A036040 and e(n,m,q,j) is the exponent of j in the q-th k parts partition of n. Rewritten eq. (8.50), Theorem 8.16, p. 307, from the Charalambides reference for s=-2.
Recurrence for the unsigned case: a(n,k) = Sum_{j=0..n-k} a(n-j-1,k-1)*C(n-1,j)*(j+2)! if k<>0 else k^n. - Peter Luschny, Mar 31 2015
A136660 Unsigned fourth column (k=3) of triangle A136656 divided by 8.
1, 18, 255, 3465, 47880, 687960, 10372320, 164656800, 2754259200, 48518870400, 899026128000, 17495593315200, 356995102464000, 7625049239808000, 170196434343936000, 3963602854987776000, 96160451873181696000
Offset: 0
Comments
Also unsigned third column of triangle A136657 divided by 4.
References
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, Table 8.3, p. 311, with s=-2, k=3 column/8.
A226167 Array read by antidiagonals: a(i,j) is the number of ways of labeling a tableau of shape (i,1^j) with the integers 1, 2, ... i+j-2 (each label being used once) such that the first row is decreasing, and the first column has m-1 labels.
1, 3, 1, 12, 5, 1, 60, 27, 7, 1, 360, 168, 48, 9, 1, 2520, 1200, 360, 75, 11, 1, 20160, 9720, 3000, 660, 108, 13, 1, 181440, 88200, 27720, 6300, 1092, 147, 15, 1, 1814400, 887040, 282240, 65520, 11760, 1680, 192, 17, 1, 19958400, 9797760, 3144960, 740880, 136080, 20160, 2448, 243, 19, 1
Offset: 1
Comments
For an arbitrary composition c, let F_c^p denote the linear transformation of NSym that is adjoint to multiplication by the fundamental quasi-symmetric function indexed by c. Then a(i,j) equals the coefficient of H_(1,1) in (F_(1)^p)^(i+j-2)(H_(i,1^j)) (see below SAGE program, and Corollary 2.7 in the below link).
Let M(n) = [a(i,j)]_{n x n}. Then det(M(n))=A000178(n)=the n-th superfactorial.
Examples
There are a(3,2) = 7 ways of labeling the tableau of shape (3,1,1) with 1, 2 and 3 (with each label being used once) such that the first row is decreasing and the first column has 1 label: 1 2 3 X X X X X X X 1 2 3 X X32 X31 X21 X32 X31 X21 321 The matrix [a(i,j)]_(6 x 6) is given below: [1 3 12 60 360 2520] [1 5 27 168 1200 9720] [1 7 48 360 3000 27720] [1 9 75 660 6300 65520] [1 11 108 1092 11760 136080] [1 13 147 1680 20160 257040]
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- C. Berg, N. Bergeron, F. Saliola, L. Serrano, and M. Zabrocki, A Lift of the Schur and Hall-Littlewood Bases to Non-Commutative Symmetric Functions, 10-11.
Crossrefs
Main diagonal gives: A023999. - Alois P. Heinz, Jan 21 2014
Programs
-
Maple
a:= (i, j)-> (i+j-2)!/i!*(2*i+j-1)*j/2: seq(seq(a(i, 1+d-i), i=1..d), d=1..12); # Alois P. Heinz, Jan 21 2014
-
Mathematica
a[n_,k_]:=(n+k-2)!/n!*(2*n+k-1)*k/2 ; Print[Array[a[#1,#2]&,{50,50}]//MatrixForm] (* A program which gives a list of tableaux *) a[i_, j_] := Module[{f, list1, el, emptylist, n}, f[q_] := StringReplace[StringReplace[StringReplace[ StringReplace[ToString[q], ToString[i + j - 1] -> "X"], ", " -> ""], "{" -> ""], "}" -> ""]; list1 = Permutations[Join[Table[q, {q, 1, i + j - 2}], {i + j - 1, i + j - 1}]]; el[q_] := First[Take[list1, {q, q}]]; emptylist = {}; n = 1; While[n < 1 + Length[list1], If[Take[el[n], {j + 1, i + j}] == Sort[Take[el[n], {j + 1, i + j}], Greater] && Count[Take[el[n], {1, j + 1}], i + j - 1] == 2, emptylist = Append[emptylist, f[el[n]]], Null]; n++]; Print[emptylist]]
-
Sage
NSym = NonCommutativeSymmetricFunctions(QQ) ; QSym = QuasiSymmetricFunctions(QQ) ; F = QSym.Fundamental() ; H = NSym.complete() ; def a(n, m): expr = H([n]+[1 for q in range(m)]) ; w=1 ; while w
Formula
a(i,j) = (i+j-2)!/i!*(2*i+j-1)*j/2.
Comments